首页 > 汽车 > 问答 > 汽车知识 > 汽车发动机工作原理,汽车ESP的工作原理是什么呢

汽车发动机工作原理,汽车ESP的工作原理是什么呢

来源:整理 时间:2022-05-20 03:37:44 编辑:汽车经验 手机版

1,汽车ESP的工作原理是什么

来看一段视频,来更为形象的了解esp电子稳定程序的工作原理
ESP是如何工作的?   ABS/TCS系统就是要防止在车辆加速或制动时出现我们所不期望的纵向滑移。而Electronic Dynamic Control /ESP就是要控制横向滑移。他是各种工况下的一个主动安全系统,处理各种异常情况,减轻驾驶员的精神紧张及身体疲劳。   只要 ESP识别出驾驶员的输入与车辆的实际运动不一致,它就马上通过有选择的制动/发动机干预来稳定车辆。   ESP首先通过方向盘转角传感器及各车轮转速传感器识别驾驶员转弯方向(驾驶员意愿)a图   ESP通过横摆角速度传感器(英文原称为yaw rate sensor ),识别车辆绕垂直于地面轴线方向的旋转角度及侧向加速度传感器识别车辆实际运动方向 b图   若a〉b,ESP判定为出现不足转向,将制动内侧后轮,使车辆进一步沿驾驶员转弯方向偏转,从而稳定车辆。(图I)   若a〈b,ESP判定为出现过度转向,ESP将制动外侧前轮,防止出现甩尾,并减弱过度转向趋势,稳定车辆。(图II)   如果单独制动某个车轮不足以稳定车辆,ESP将通过降低发动机扭矩输出的方式或制动其它车轮来满足需求

汽车ESP的工作原理是什么呢

2,汽车暖风的工作原理是什么

暖风是来自于发动机工作时产生的热量。当发动机的冷却系统给发动机散热后,通过风扇将散出的热量送入车内,形成暖风;在不使用暖风时,风扇停转,热风口关闭,散出的热量就会完全散入大气中。所以,汽车暖风属于废物再利用,不会耗费油量。空调AC是空调压缩机的开关。夏天使用空调时,必须打开空调AC,即冷气必须打开。然而,暖空气只利用车内的热循环,根本不需要启动空调压缩机。因此,只需调节空调按钮,无需打开空调开关即可打开暖风。在寒冷的季节,我们需要迅速提高车内温度。汽车启动时,发动机开始预热。当发动机的温度指针指向中间位置后,首先打开暖风空调,将空气循环设置为外部循环,这样车内的冷空气就可以排出车外。等待2至3分钟后,将空气循环设置为内部循环。扩展资料:冬天车内开空调的注意事项1、长时间开启暖风空调内循环的模式下,汽车内的空气并不新鲜,尤其是汽车的空间并不大,所以冬天汽车开空调一定要注意定时开窗通风。2、车内开暖风时,最好是半开窗,让空气有一定的流通,开启对流模式,可以防车内干燥,也可以提高车内的空气质量。3、注意在使用空调后,停车之前,就应该关掉空调,而且空调内的温暖也是可以维持一小段时间的,所以不用担心太冷,同时要开启外循环系统,这样可以清扫空调系统的风路管道,避免滋生细菌。参考资料来源:人民网-冬天在汽车里开暖风真的会增加耗油吗?
依靠发动机水温的温度来实现给驾驶室增温的
在现代轿车上,如果按照热源的种类进行划分,汽车暖风系统主要分为两种:一种是以发动机冷却液为热源(目前绝大多数车辆使用),另外一种是以燃料为热源(少数中高档轿车采用)。为了让大家了解汽车暖风系统究竟是怎么回事?下面我们就将目前应用广泛的以发动机冷却液为热源的主流汽车暖风系统为大家进行简要介绍。 此种暖风系统因其使用成本低廉取暖效率较高,深受广大汽车厂商青睐,因此虽然目前的汽车技术较之过去已经发生了翻天覆地的变化,但这种传统的取暖技术依然如日中天。这种暖风系统多与汽车空调系统做在一起,因此它的操作方式与制冷系统的操作是一样的,只不过是需要通过温度调节装置进行切换。该系统由暖风小水箱、鼓风机、操控装置及风道组成。系统的工作原理是:当发动机冷却液温度较高时,冷却液流过暖风系统中的热交换器(一般称为暖风小水箱),将鼓风机送来的空气与发动机冷液进行热交换,空气加热后被鼓风机通过各出风口送入车内。这种系统装置简单而供热可靠,不另需燃料,只要发动机工作,便可产生热水。但也有其明显的缺点,即必须在发动机冷却液温度上升到大循环时才能供暖。
冷却液温度可以达到80℃,然后就是暖气原理。你懂得
利用发动机冷却系统的热量提高驾驶室的温度

汽车暖风的工作原理是什么

3,简述发动机的工作原理

直流电动机工作原理
这个发动机的原理是什么?
1.吸入空气经过滤得到新鲜(活塞向下活动)2.压缩刚进入的空气,加入燃油点火燃烧在燃烧室(点火配合正时,活塞向上活动)3.产生了高温高压,进排气门关闭了,燃烧室聚集了强大的爆发能量推动活塞(活塞向下活动,发动机的动力主要来自)4.放出了不怎么新鲜的气体经排气管(活塞向上活动)5.活塞主要是得到强大的推动力,经连杆传送动力给曲轴,从而产生转动力
发动机分为活塞发动机,冲压发动机,火箭发动机,涡轮发动机。  工作过程:进气-压缩-喷油-燃烧-膨胀做功-排气。  进气冲程  进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。  压缩冲程  由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。  做功冲程  当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。  排气冲程  柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。
四冲程发动机的工作原理: 在四冲程内燃机中,活塞往复如下四个行程(进气、压缩、作功、排气)完成一个工作循环。 1) 进气行程:进气门打开,排气门关闭,活塞从上止点向下止点移动,活塞上方容积增大,气缸内压力降低,产生真空吸力,吸入可燃混合气(化油器式发动机)或纯空气(电控汽油喷射式发动机)。 2) 压缩行程:进气门和排气门均关闭,活塞从下止点向上止点运动,把可燃混合气压缩到活塞顶部的燃烧室内。 3) 做功行程:压缩行程终了时,进、排气门仍关闭,火花塞产生电火花,点燃可燃混合气并产生向下的推力,使活塞迅速下移推动曲轴旋转而作功。 4) 排气行程:排气门开启,进气门关闭,活塞从下止点向上止点移动,将燃烧后产生的废气排出。 以上都是我课本的内容~复习考试哦~

简述发动机的工作原理

4,汽车发动机的工作原理

四冲程汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。这期间活塞在上、下止点间往复移动了四个行程,相应地曲轴旋转了两周。柴油机工作原理汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油与汽油相比,自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火(压燃式点火),而汽油机是火花塞点燃。扩展资料:车发动机是为汽车提供动力的装置,是汽车的心脏,决定着汽车的动力性、经济性、稳定性和环保性。根据动力来源不同,汽车发动机可分为柴油发动机、汽油发动机、电动汽车电动机以及混合动力等。 常见的汽油机和柴油机都属于往复活塞式内燃机,是将燃料的化学能转化为活塞运动的机械能并对外输出动力。汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。百度百科--汽车发动机
由于汽油和柴油的不同特性,汽油机和柴油机在工作原理和结构上有差异。一、汽油发动机(汽油机)的工作原理四冲程汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 二、四冲程柴油机工作原理汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油与汽油相比,自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火(压燃式点火),而汽油机是火花塞点燃。拓展资料:汽车发动机是为汽车提供动力的装置,是汽车的心脏,决定着汽车的动力性、经济性、稳定性和环保性。根据动力来源不同,汽车发动机可分为柴油发动机、汽油发动机、电动汽车电动机以及混合动力等。 常见的汽油机和柴油机都属于往复活塞式内燃机,是将燃料的化学能转化为活塞运动的机械能并对外输出动力。汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。汽车发动机--百度百科
汽车的发动机工作原理:汽车发动机是依靠油气混合物爆燃产生的力量推动活塞,然后驱动曲轴旋转进行工作的。一共可以分为四个行程。吸气,压缩,做功,排气。在吸气行程,活塞下移,进气门打开,排气门关闭,油气混合物(柴油机就是空气)在负压作用下进入气缸。在压缩行程,进气门,排气门均关闭,活塞上移,油气混合物被压缩升温。做功行程,进气门,排气门均关闭,火花塞点火(柴油机是喷油嘴喷油),混合气被点燃(柴油机是雾状柴油被高温空气引燃),产生爆燃,推动活塞下行,继而通过连杆把推力传递给曲轴。排气行程,进气门关闭,排气门打开,活塞上行,排除缸内废气。然后就是一直重复这个过程。其中,凸轮轴转一圈,曲轴转两圈,做一次功。手打文字,引用不究 by~神秘大叔。
汽车的发动机工作原理:汽车发动机是依靠油气混合物爆燃产生的力量推动活塞,然后驱动曲轴旋转进行工作的。一共可以分为四个行程。吸气,压缩,做功,排气。在吸气行程,活塞下移,进气门打开,排气门关闭,油气混合物(柴油机就是空气)在负压作用下进入气缸。在压缩行程,进气门,排气门均关闭,活塞上移,油气混合物被压缩升温。做功行程,进气门,排气门均关闭,火花塞点火(柴油机是喷油嘴喷油),混合气被点燃(柴油机是雾状柴油被高温空气引燃),产生爆燃,推动活塞下行,继而通过连杆把推力传递给曲轴。排气行程,进气门关闭,排气门打开,活塞上行,排除缸内废气。然后就是一直重复这个过程。其中,凸轮轴转一圈,曲轴转两圈,做一次功。手打文字,引用不究 by~神秘大叔
发动机的工作原理是,向气缸中喷入燃油和空气的混合气体并点火,混合气体燃烧时体积膨胀,产生的能量推动活塞移动,再通过曲轴将活塞的上下移动转变为旋转运动,使发动机运转。几乎所有汽车都采用该类发动机。混合气体燃烧所爆发出的能量使活塞上下移动,从而带动曲轴等部件进行旋转运动。上下移动转换为旋转运动空气由进气歧管供给,燃油从喷油器中喷出,将空气和燃油充分混合后通过进气门输送至气缸。混合气体在气缸内经火花塞点燃后燃烧,气体的体积急剧膨胀,压力和温度迅速升高。在气体压力的作用下,活塞迅速向下移动,随后因废气的排出又向上移动。与活塞相连接的连杆同时也固定在曲轴上,通过连杆可以将活塞的上下移动转换为曲轴的旋转运动。活塞的上下移动分为进气、压缩、做功、排气四个冲程,拥有这四个冲程的发动机就称为四冲程发动机。扩展资料:发动机简介:1.发动机(Engine)是一种能够把其它形式的能转化为机械能的机器,包括如内燃机(汽油发动机等)、外燃机(斯特林发动机、蒸汽机等)、电动机等。如内燃机通常是把化学能转化为机械能。2.发动机既适用于动力发生装置,也可指包括动力装置的整个机器(如:汽油发动机、航空发动机)。发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。3.外燃机,就是说它的燃料在发动机的外部燃烧,1816年由苏格兰的R.斯特林所发明,故又称斯特林发动机。4.发动机将这种燃烧产生的热能转化成动能,瓦特改良的蒸汽机就是一种典型的外燃机,当大量的煤燃烧产生热能把水加热成大量的水蒸汽时,高压便产生了,然后这种高压又推动机械做功,从而完成了热能向动能的转变。5.内燃机这一类型的发动机与外燃机的最大不同在于它的燃料在其内部燃烧。内燃机的种类十分繁多,常见的汽油机、柴油机是典型的内燃机。6.不常见的火箭发动机和飞机上装配的喷气式发动机也属于内燃机。不过,由于动力输出方式不同,前两者和后两者又存在着巨大的差异。一般地,在地面上使用的多是前者,在空中使用的多是后者。7.当然有些汽车制造者出于创造世界汽车车速新纪录的目的,也在汽车上装用过喷气式发动机,但这总是很特殊的例子,并不存在批量生产的适用性。8.此外还有燃气轮机,这种发动机的工作特点是燃烧产生高压燃气,利用燃气的高压推动燃气轮机的叶片旋转,从而输出动力。燃气轮机使用范围很广,但由于很难精细地调节输出的功率,所以汽车和摩托车很少使用燃气轮机,只有部分赛车装用过燃气轮机。参考资料:搜狗百科发动机

5,热声斯特林发动机原理

热气机(StirlingEngine)是一种由外部供热使气体在不同温度下作周期性压缩和膨胀的闭式循环往复式发动机,由苏格兰牧师RobertStirling在十九世纪初发明,所以又称斯特林发动机。相对于内燃机燃料在气缸内燃烧的特点热气机又被称作外燃机。现在热气机特指按闭式回热循环工作的热机,不包括斯特林热泵或斯特林制冷机。 热气机工作原理 热气机是一种外燃的、闭式循环往复活塞式热力发动机。 热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。 已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。 按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。 热力循环可以分为定温压缩过程、定容回热过程、定温膨胀过程、定容储热过程四个过程。
热气机(stirlingengine)是一种由外部供热使气体在不同温度下作周期性压缩和膨胀的闭式循环往复式发动机,由苏格兰牧师robertstirling在十九世纪初发明,所以又称斯特林发动机。相对于内燃机燃料在气缸内燃烧的特点热气机又被称作外燃机。现在热气机特指按闭式回热循环工作的热机,不包括斯特林热泵或斯特林制冷机。热气机工作原理热气机是一种外燃的、闭式循环往复活塞式热力发动机。热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。热力循环可以分为定温压缩过程、定容回热过程、定温膨胀过程、定容储热过程四个过程。改良的单缸斯特林发动机示意http://202.108.15.245/boardfile/mil/20066/20060209083142.gif已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。美国stm公司的民用25kw外燃机按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。配气活塞式热气机,在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动;双作用式热气机,每个气缸内只有一个活塞,兼起配气活塞和动力活塞的作用。各缸的上部为热腔,下部为冷腔。各热腔经加热器、回热器和冷却器与邻缸的下部冷腔连接,组成一个动力单元。日本亲潮级潜艇使用的斯特林发动机原理图热力循环可以分为定温压缩过程、定容回热过程、定温膨胀过程、定容储热过程四个过程。两缸外燃机工作原理http://202.108.15.245/boardfile/mil/20066/20060209085020.gif与内燃机比较热气机所具备的优点:适用于各种能源,无论是液态的、气态的或固态的燃料,当采用载热系统(如热管)间接加热时,几乎可以使用任何高温热源(太阳能放射性同位素和核反应等),而发动机本身(除加热器外)不需要作任何更改。同时热气机无需压缩机增压,使用一般风机即可满足要求,并允许燃料具有较高的杂质含量。热气机在运行时,由于燃料在气缸外的燃烧室内连续燃烧,独立于燃气的工质通过加热器吸热,并按斯特林循环对外做功,因此避免了类似内燃机的震爆做功和间歇燃烧过程,从而实现了高效、低噪和低排放运行。高效:总能效率达到80%以上;低噪:1米处裸机噪音底于68dba;低排放:尾气排放达到欧5标准。热气机单机容量小,机组容量从20-50kw,可以因地制宜的增减系统容量。结构简单,零件数比内燃机少40%,降价空间大,同时维护成本也较低。热气机尚存在的主要问题和缺点是制造成本较高,工质密封技术较难,密封件的可靠性和寿命还存在问题,功率调节控制系统较复杂,机器较为笨重。热气机的未来发展将更多的应用新材料(如陶瓷)和新工艺,以降低造价;对实际循环进行理论研究,完善结构,提高性能指标;在应用方面,正大力研究汽车用的大功率燃煤热气机、太阳能热气机和特种用途热气机等。热气机分为单缸、2缸、4缸等形式;单缸热气机的燃烧室与冷却器共一室,需要交替向燃烧室中注入燃气、燃烧、排气、注入冷却气体等循环过程,驱动活塞上下运动带动曲轴转动,由于燃烧室需要交替使用,与一般的内燃机一样复杂,很少再发展。2缸热气机的燃烧、冷却过程完全连续,1个汽缸加热、1个冷却,工质在2个气缸中密闭循环,反复被加热冷却,活塞在热气驱动下上下运动驱动曲轴旋转。4缸热气机的气缸上部加热、下部冷却,或相反,工质在相邻两个气缸的上下部间循环,4个活塞交替上下,直接驱动斜盘转动,工作最为平顺。4缸型的斯特林发动机热气机的应用随着全球能源与环保的形势日趋严峻,热气机由于其具有多种能源的广泛适应性和优良的环境特性已越来越受到重视,所以,在水下动力、太阳能动力、空间站动力、热泵空调动力、车用混合推进动力等方面得到了广泛的研究与重视,并且已得到了一些成功的应用。热气机推广中的3个方向包括:热电联产充分利用它环境污染小和可使用多种燃料及易利用余热的特点,用于热电联产可取得更高的热效率和经济效率。四联装余热回收系统低能级的余热回收利用对燃烧系统稍加改进便可利用工场余热、地热和太阳能进行发电或直接驱动水泵,可取得更大的节能效益。移动式动力源通过对发动机的小型化和轻量化,并改善其控制性能后,亦可以作为推土机、压路机等车辆的动力。注意斯特林发动机的发明时间是1816,是和蒸汽机差不多的古老的发动机,多年没有引起人们的重视,斯特林发动机的几个特性是非常适合潜艇的,首先是燃烧连续,由于工质不燃烧,因此没有内燃机的爆震现象,噪音低;其次可以使用任何燃料,其燃烧室在外,燃烧的过程与工质无关,或者说只要有热源、冷源就能工作,无论烧煤烧碳都可以,只要能发热就行;在凡尔纳的科幻小说《海底两万里》中,那艘著名的潜艇诺第留斯号的动力就是斯特林发动机,他的热源是采用钠与水反应生热,说明凡尔纳具有多么的科学远见。海底两万里漫画斯特林(robertstirling,1790—1878)英国物理学家,热力学研究专家。斯特林对于热力学的发展有很大贡献。他的科学研究工作主要是热机。热机的研制工作,是18世纪物理学和机械学的中心课题,各种各样的热机殊涌而出,不断互相借鉴,取长补短,热机制造业兴旺起来,工业革命处于高潮时期。随着热机发展,热力学理论研究提到了重要位置,不少科学家致力于热机理论的研究工作,斯特林便是其中著名的一位。他所提出的斯特林循环,是重要的热机循环之一,亦称“斯特林热气机循环”。这种循环,是封闭式的,采用定容下吸热的气体循环方式。循环过程是:①等容吸热加热;②由外热源等温加热;③等容放热,供吸热用;④向冷体等温放热,完成一个循环。在理想吸热的条件下,这种循环的热效率,等于温度上下限相同的卡诺循环。利用这种循环的“斯特林热机”,具有很多特点,如采用外燃,或外热源供热等。由于这种循环是封闭式循环,可采用传热性能好的工质,同时,工质的腐蚀性也可以很小,如氮气、氢气等气体。充入的气体工质,还可以加大压力,视封闭系统的情况,能够采用远远大于大气压力的高压气体工作,这样可以提高发动机的单位重量的功率,减小发动机的体积和重量。斯特林热机在逆向运转时,可以作为制冷机或热泵机,这种设想在现代已进入了实用研究阶段。斯特林循环热空气发动机不排废气,除燃烧室内原有的空气外,不需要其他空气,所以适用于都市环境和外层空间。18世纪末和19世纪初,热机普遍为蒸汽机,它的效率是很低的,只有3%一5%左右,即有95%以上的热能没有得到利用。到1840年,热机的效率也仅仅提高到8%。斯特林对于热力学理论的研究,就是从提高热机效率的目的出发的。他所提出的斯特林循环的效率,在理想状况下,可以无限提高。当然受实际可能的限制,不可能达到100%,但提供了提高热效率的努力方向。

6,简述带锁止离合器的综合式液力变矩器的基本结构和工作原理

液力变矩器位于自动变速器的最前端,安装在发动机的飞轮上,其作用与采用手动变速器的汽车中的离合器相似。它利用油液循环流动过程中动能的变化将发动机的动力传递自动变速器的输入轴,并能根据汽车行驶阻力的变化,在一定范围内自动地、无级地改变传动比和扭矩比,具有一定的减速增扭功能.液力变矩器位于自动变速器的最前端,安装在发动机的飞轮上,其作用与采用手动变速器的汽车中的离合器相似。它利用油液循环流动过程中动能的变化将发动机的动力传递自动变速器的输入轴,并能根据汽车行驶阻力的变化,在一定范围内自动地、无级地改变传动比和扭矩比,具有一定的减速增扭功能。 液力变矩器的基本工作原理:1-由泵轮冲向涡轮的液压油方向 2-由涡轮冲向导轮的液压油方向 3-由导轮流回泵轮的液压油方向。 当汽车在液力变矩器输出扭矩的作用下起步后,与驱动轮相连接的涡轮也开始转动,其转速随着汽车的加速不断增加。这时由泵轮冲向涡轮的液压油除了沿着涡轮叶片流动之外,还要随着涡轮一同转动,使得由涡轮下缘出口处冲向导轮的液压油的方向发生变化,不再与涡轮出口处叶片的方向相同,而是顺着涡轮转动的方向向前偏斜了一个角度,使冲向导轮的液流方向与导轮叶片之间的夹角变小,导轮上所受到的冲击力矩也减小,液力变矩器的增扭作用亦随之减小。车速愈高,涡轮转速愈大,冲向导轮的液压油方向与导轮叶片的夹角就愈小,液力变矩器的增扭作用亦愈小;反之,车速愈低,液力变矩器的增扭作用就愈小。因此,与液力耦合器相比,液力变矩器在汽车低速行驶时有较大的输出扭矩,在汽车起步,上坡或遇到较大行驶阻力时,能使驱动轮获得较大的驱动力矩。 当涡轮转速随车速的提高而增大到某一数值时,冲向导轮的液压油的方向与导轮叶片之间的夹角减小为0,这时导轮将不受液压油的冲击作用,液力变矩器失去增扭作用,其输出扭矩等于输入扭矩。 若涡轮转速进一步增大,冲向导轮的液压油方向继续向前斜,使液压油冲击在导轮叶片的背面,这时导轮对液压油的反作用扭矩Ms的方向与泵轮对液压油扭矩Mp的方向相反,故此涡轮上的输出扭矩为二者之差,即Mt=Mp-Ms,液力变矩器的输出扭矩反而比输入扭矩小,其传动效率也随之减小。当涡轮转速较低时,液力变矩器的传动效率高于液力耦合器的传动效率;当涡轮的转速增加到某一数值时,液力变矩器的传动效率等于液力耦合器的传动效率;当涡轮转速继续增大后,液力变矩器的传动效率将小于液力耦合器的传动效率,其输出扭矩也随之下降。因此,上述这种液力变矩器是不适合实际使用的当涡轮转速较低时,从涡轮流出的液压油从正面冲击导轮叶片,对导轮施加一个朝逆时针方向旋转的力矩,但由于单向超越离合器在逆时针方向具有锁止作用,将导轮锁止在导轮固定套上固定不动,因此这时该变矩器的工作特性和液力变矩器相同,涡轮上的输出扭矩大于泵轮上的输入扭矩即具有一定的增扭作用。当涡轮转速增大到某一数值时,液压油对导轮的冲击方向与导轮叶片之间的夹角为0,此是涡轮上的输出扭矩等于泵轮上的输入扭矩。若涡轮转速继续增大,液压油将从反面冲击导轮,对导轮产生一个顺时针方向的扭矩。由于单向超越离合器在顺时针方向没有锁止作用,可以像轴承一样滑转,所以导轮在液压油的冲击作用下开始朝顺时针方向旋转。由于自由转动的导轮对液压油没有反作用力矩,液压油只受到泵轮和涡轮的反作用力矩的作用。因此这时该变矩器的不能起增扭作用,其工作特性和液力耦合器相同。这时涡轮转速较高,该变矩器亦处于高效率的工作范围。 导轮开始空转的工作点称为偶合点。由上述分析可知,综合式液力变矩器在涡轮转速由0至偶合点的工作范围内按液力变矩器的特性工作,在涡轮转速超过偶合点转速之后按液力耦合器的特性工作。因此,这种变矩器既利用了液力变矩器在涡轮转速较低时所具有的增扭特性,又利用了液力耦合器涡轮转速较高时所具有的高传动效率的特性。 3、锁止式液力变矩器的结构与工作原理 变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。这种变矩器内有一个由液压油操纵的锁止离合器。锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作轴向移动的压盘,它通过花键套与涡轮连接.压盘背面的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。锁止控制阀由自动变速器电脑通过锁止电磁阀来控制 液力耦合器和液力变矩器的结构与工作原理 现代汽车上所用自动变速器,在结构上虽有差异,但其基本结构组成和工作原理却较为相似,前面已介绍了自动变速器主要由液力变矩器、变速齿轮机构、供油系统、自动换挡控制系统、自动换挡操纵装置等部分组成。本章将分别介绍自动变速器中各组成部分的常见结构和工作原理,为自动变速器的拆装和故障检修提供必要的基本知识。 汽车上所采用的液力传动装置通常有液力耦合器和液力变矩器两种,二者均属于液力传动,即通过液体的循环液动,利用液体动能的变化来传递动力。 (一)液力耦合器的结构与工作原理 1、液力耦合器的结构组成 液力耦合器是一种液力传动装置,又称液力联轴器。在不考虑机械损失的情况下,输出力矩与输入力矩相等。它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。其结构主要由壳体、泵轮、涡轮三个部分组成,如图1-2所示。 图1-2 液力耦合器的基本构造 1-输入轴 2-泵轮叶轮 3-涡轮叶轮 4-轮出轴 液力耦合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力耦合器的主动部分:涡轮和输出轴连接在一起,是液力耦合器的从动部分。泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约3~4);泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 2、液力耦合器的工作原理 当发动机运转时,曲轴带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。 液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液力耦合器要实现传动,必须在泵轮和涡轮之间有油液的循环流动。而油液循环流动的产生,是由于泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差所致。如果泵轮和涡轮的转速相等,则液力耦合器不起传动作用。因此,液力耦合器工作时,发动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。由于在液力耦合器内只有泵轮和涡轮两个工作轮,液压油在循环流动的过程中,除了受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,即发动机传给泵轮的扭矩与涡轮上输出的扭矩相等,这就是液力耦合器的传动特点。 液力耦合器在实际工作中的情形是:汽车起步前,变速器挂上一定的挡位,起动发动机驱动泵轮旋转,而与整车连接着的涡轮即受到力矩的作用,但因其力矩不足于克服汽车的起步阻力矩,所以涡轮还不会随泵轮的转动而转动。加大节气门开度,使发动机的转速提高,作用在涡轮上的力矩随之增大,当发动机转速增大到一定数值时,作用在涡轮上的力矩足以使汽车克服起步阻力而起步。随着发动机转速的继续增高,涡轮随着汽车的加速而不断加速,涡轮与泵轮转速差的数值逐渐减少。在汽车从起步开始逐步加速的过程中,液力耦合器的工作状况也在不断变化,这可用如图1-3所示的速度矢量图来说明。假定油液螺旋循环流动的流速VT保持恒定,VL为泵轮和涡轮的相对线速度,VE为泵轮出口速度,VR为油液的合成速度。 图1-3 涡轮处于不同转速时的液流情况 ()涡轮不动 (b)中速 (c)高速 当车辆即将要起步时,泵轮在发动机驱动下转动而涡轮静止不动。由于涡轮没有运动,泵轮与涡轮间的相对速度VL将达最大值,由此而得到的合成速度,即油液从泵轮进入涡轮的速度VR也是最大的。油液进入涡轮的方向和泵轮出口速度之间的夹角θ1也较小,这样液流对涡轮叶片产生的推力也就较大。 当涡轮开始旋转并逐步赶上泵轮的转速时,泵轮与涡轮间的相对线速度减小,使合成速度VR减小,并使VR和泵轮出口线速度VE之间的夹角增大。这样液流对涡轮叶片的冲击力及由此力产生的承受扭矩的能力减小,不过随着汽车速度的增加,需要的驱动力矩也迅速降低。 当涡轮高速转动,即输出和输入的转速接近相同时,相对速度VL和合成速度VR都很小,而合成速度VR与泵轮出口速度VE间的夹角很大,这就使液流对涡轮叶片的推力变得很小,这将使输出元件滑动,直到有足够的循环油液对涡轮产生足够的冲击力为止。 由此可见,输出转速高时,输出转速赶上输入转速是一个连续不断的趋势,但总不会等于输入转速。除非在工作状况反过来,变速器变成主动件,发动机变成被动件,涡轮的转速才会等于或高于泵轮转速。这种情况在下坡时可能会发生。 (二)液力变矩器的结构与工作原理 液力变矩器是液力传动中的又一种型式,是构成液力自动变速器不可缺少的重要组成部分之一。它装置在发动机的飞轮上,其作用是将发动机的动力传递给自动变速器中的齿轮机构,并具有一定的自动变速功能。自动变速器的传动效率主要取决于变矩器的结构和xing能。 常用液力变矩器的型式有一般型式的液力变矩器、综合式液力变矩器和锁止式液力变矩器。其中综合式液力变矩器的应用较为广泛。 1、一般型式的与工作原理 的与液力耦合器相似,它有3个工作轮即泵轮、涡轮和异轮。泵轮和涡轮的构造与液力耦合器基本相同;导轮则位于泵轮和涡轮之间,并与泵轮和涡轮保持一定的轴向间隙,通过导轮固定套固定于变速器壳体上(图1-4)。 图1-4 1-飞轮 2-涡轮 3-泵轮 4-导轮 5-变矩器输出轴 6-曲轴 7-导轮固定套 发动机运转时带动的壳体和泵轮与之一同旋转,泵轮内的液压油在离心力的作用下,由泵轮叶片外缘冲向涡轮,并沿涡轮叶片流向导轮,再经导轮叶片内缘,形成循环的液流。导轮的作用是改变涡轮上的输出扭矩。由于从涡轮叶片下缘流向导轮的液压油仍有相当大的冲击力,只要将泵轮、涡轮和导轮的叶片设计成一定的形状和角度,就可以利用上述冲击力来提高涡轮的输出扭矩。为说明这一原理,可以假想地将的3个工作轮叶片从循环流动的液流中心线处剖开并展平,得到图1-5所示的叶片展开示意图;并假设在工作中,发动机转速和负荷都不变,即泵轮的转速np和扭矩Mp为常数。 在汽车起步之前,涡轮转速为0,发动机通过壳体带动泵轮转动,并对液压油产生一个大小为Mp的扭矩,该扭矩即为的输入扭矩。液压油在泵轮叶片的推动下,以一定的速度,按图1-5(b)中箭头1所示方向冲向涡轮上缘处的叶片,对涡轮产生冲击扭矩,该扭矩即为的输出扭矩。此时涡轮静止不动,冲向涡轮的液压油沿叶片流向涡轮下缘,在涡轮下缘以一定的速度,沿着与涡轮下缘出口处叶片相同的方向冲向导轮,对导轮也产生一个冲击力矩,并沿固定不动的导轮叶片流回泵轮。当液压油对涡轮和导轮产生冲击扭矩时,涡轮和导轮也对液压油产生一个与冲击扭矩大小相等、方向相反的反作用扭矩Mt和M,其中Mt的方向与Mp的方向相反,而M的方向与Mp的方向相同。根据液压油受力平衡原理,可得:Mt=Mp M。由于涡轮对液压油的反作用,扭矩Mt与液压油对涡轮的冲击扭矩(即变矩器的输出扭矩)大小相等,方向相反,因此可知,的输出扭矩在数值上等于输入扭矩与导轮对液压油的反作用扭矩之和。显然这一扭矩要大于输入扭矩,即具有增大扭矩的作用。输出扭矩增大的部分即为固定不动的导轮对循环流动的液压油的作用力矩,其数值不但取决于由涡轮冲向导轮的液流速度,也取决于液流方向与导轮叶片之间的夹角。当液流速度不变时,叶片与液流的夹角愈大,反作用力矩亦愈大,的增扭作用也就愈大。一般的最大输出扭矩可达输入扭矩的2.6倍左右。 图1-5 工作原理图 A-泵轮 B-涡轮 C-导轮 1-由泵轮冲向涡轮的液压油方向 2-由涡轮冲向导轮的液压油方向 3-由导轮流回泵轮的液压油方向。 当汽车在液力变矩器输出扭矩的作用下起步后,与驱动轮相连接的涡轮也开始转动,其转速随着汽车的加速不断增加。这时由泵轮冲向涡轮的液压油除了沿着涡轮叶片流动之外,还要随着涡轮一同转动,使得由涡轮下缘出口处冲向导轮的液压油的方向发生变化,不再与涡轮出口处叶片的方向相同,而是顺着涡轮转动的方向向前偏斜了一个角度,使冲向导轮的液流方向与导轮叶片之间的夹角变小,导轮上所受到的冲击力矩也减小,液力变矩器的增扭作用亦随之减小。车速愈高,涡轮转速愈大,冲向导轮的液压油方向与导轮叶片的夹角就愈小,液力变矩器的增扭作用亦愈小;反之,车速愈低,液力变矩器的增扭作用就愈小。因此,与液力耦合器相比,液力变矩器在汽车低速行驶时有较大的输出扭矩,在汽车起步,上坡或遇到较大行驶阻力时,能使驱动轮获得较大的驱动力矩。 当涡轮转速随车速的提高而增大到某一数值时,冲向导轮的液压油的方向与导轮叶片之间的夹角减小为0,这时导轮将不受液压油的冲击作用,液力变矩器失去增扭作用,其输出扭矩等于输入扭矩。 若涡轮转速进一步增大,冲向导轮的液压油方向继续向前斜,使液压油冲击在导轮叶片的背面,如图1-5(c)所示,这时导轮对液压油的反作用扭矩M的方向与泵轮对液压油扭矩Mp的方向相反,故此涡轮上的输出扭矩为二者之差,即Mt=Mp-M,液力变矩器的输出扭矩反而比输入扭矩小,其传动效率也随之减小。当涡轮转速较低时,液力变矩器的传动效率高于液力耦合器的传动效率;当涡轮的转速增加到某一数值时,液力变矩器的传动效率等于液力耦合器的传动效率;当涡轮转速继续增大后,液力变矩器的传动效率将小于液力耦合器的传动效率,其输出扭矩也随之下降。因此,上述这种液力变矩器是不适合实际使用的。 2、综合式液力变矩器的结构与工作原理 目前在装用自动变速器的汽车上使用的变矩器大多是综合式液力变矩器(图1-6),它和一般型式液力变矩器的不同之处在于它的导轮不是完全固定不动的,而是通过单向超越离合器支承在固定于变速器壳体的导轮固定套上。单向超越离合器使导轮可以朝顺时针方向旋转(从发动机前面看),但不能朝逆时针方向旋转。 图1-6 综合式液力变矩器 1-曲轴 2-导轮 3-涡轮 4-泵轮 5-液流 6-变矩器轴套 7-油泵 8-导轮固定套 9-变矩器输出轴 10-单向超越离合器。 当涡轮转速较低时,从涡轮流出的液压油从正面冲击导轮叶片,如图1-5(b)所示,对导轮施加一个朝逆时针方向旋转的力矩,但由于单向超越离合器在逆时针方向具有锁止作用,将导轮锁止在导轮固定套上固定不动,因此这时该变矩器的工作特xing和液力变矩器相同,涡轮上的输出扭矩大于泵轮上的输入扭矩即具有一定的增扭作用。当涡轮转速增大到某一数值时,液压油对导轮的冲击方向与导轮叶片之间的夹角为0,此是涡轮上的输出扭矩等于泵轮上的输入扭矩。若涡轮转速继续增大,液压油将从反面冲击导轮,如图1-5(c)所示,对导轮产生一个顺时针方向的扭矩。由于单向超越离合器在顺时针方向没有锁止作用,可以像轴承一样滑转,所以导轮在液压油的冲击作用下开始朝顺时针方向旋转。由于自由转动的导轮对液压油没有反作用力矩,液压油只受到泵轮和涡轮的反作用力矩的作用。因此这时该变矩器的不能起增扭作用,其工作特xing和液力耦合器相同。这时涡轮转速较高,该变矩器亦处于高效率的工作范围。 导轮开始空转的工作点称为偶合点。由上述分析可知,综合式液力变矩器在涡轮转速由0至偶合点的工作范围内按液力变矩器的特xing工作,在涡轮转速超过偶合点转速之后按液力耦合器的特xing工作。因此,这种变矩器既利用了液力变矩器在涡轮转速较低时所具有的增扭特xing,又利用了液力耦合器涡轮转速较高时所具有的高传动效率的特xing。 3、锁止式液力变矩器的结构与工作原理 变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。这种变矩器内有一个由液压油操纵的锁止离合器。锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作轴向移动的压盘,它通过花键套与涡轮连接(图1-7)。压盘背面(图中右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。 图1-7 带锁止离合器的综合式液力变矩器 1-变矩器壳 2-锁止离合器压盘 3-涡轮 4-泵轮 5-变矩器轴套 6-输出轴花键套 7-导轮 自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,操纵锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。当车速较低时,锁止控制阀让液压油从油道B进入变矩器,使锁止离合器压盘两侧保持相同的油压,锁止离合器处于分离状态,这时输入变矩器的动力完全通过液压油传至涡轮,图1-8()所示。当汽车在良好道路上高速行驶,且车速、节气门开度、变速器液压油温度等因素符合一定要求时,电脑即操纵锁止控制阀,让液压油从油道C进入变矩器,而让油道B与泄油口相通,使锁止离合器压盘左侧的油压下降。由于压盘背面(图中右侧)的液压油压力仍为变矩器压力,从而使压盘在前后两面压力差的作用下压紧在主动盘(变矩器壳体)上,如图1-8(b)所示,这时输入变矩器的动力通过锁止离合器的机械连接,由压盘直接传至涡轮输出,传动效率为100外,锁止离合器在结合时还能减少变矩器中的液压油因液体摩擦而产生的热量,有利用降低液压油的温度。有些车型的液力变矩器的锁止离合器盘上还装有减振弹簧,以减小锁止离合器在结合时瞬间产生的冲击力(如图1-9所示)。 图1-8 锁止离合器工作原理示意图 1-锁止离合器压盘 2-涡轮 3-变矩器壳 4-导轮 5-泵轮 6-变矩器输出轴;变矩器出油道 C-锁止离合器控制油道。 图1-9 带减振弹簧的压盘 1-减振弹簧 2-花键套
文章TAG:汽车发动机工作原理汽车ESP的工作原理是什么呢汽车汽车发动机发动

最近更新