首页 > 教育 > 问答 > 教育经验 > 高二物理知识点总结,高二物理知识总结有哪些

高二物理知识点总结,高二物理知识总结有哪些

来源:整理 时间:2022-07-22 09:27:10 编辑:教育管理 手机版

1,高二物理知识总结有哪些

天体运动,电学,电磁学那些

高二物理知识总结有哪些

2,高二物理知识点总结大全

一、质点的运动----直线运动 1)匀变速直线运动 1.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 2.末速度Vt=Vo+at 3. 位移S=Vot+at2/2=V平=tVt/2t 4. 有用推论Vt2 -Vo2=2as 5.平均速度V平=S/t (定义式) 6.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 中间位置速度Vs/2=[(Vo2 +Vt2)/2] 1/2 7. 实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差 8. 主要物理量及单位:初速度(Vo):m/s 加速度(a):m/s2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程: 米(m) 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。 (2)物体速度大,加速度不一定大。 (3)a=(Vt-Vo)/t只是量度式,不是决定式。 (4)其它相关内容:质点、位移和路程、速度与速率、s--t图、v--t图 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小;地球两极最大;在高山处比平地小。 3)* 竖直上抛 1.位移S=Vot- gt2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 ) 3.有用推论Vt2 -Vo2=-2gS 4.上升最大高度Hm=Vo2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 (2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。 (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动----曲线运动 万有引力 1)平抛运动 1.水平方向速度Vx=Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx=Vot 4.竖直方向位移Sy=gt2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx2+ Sy2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。 (2)运动时间由下落高度h(Sy)决定与水平抛出速度无关;在平抛运动中t是解题关键。 (3)α与β的关系为tgβ=2tgα。 (4)当速度方向与合力(加速度)方向不在同一直线上时物体做曲线运动;曲线运动必有加速度。 2)匀速圆周运动 1.线速度V=s/t=2πR/T =ωR 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/R=ω2R=(2π/T)2R 4.向心力F向心=mV2/R=mω2R=m(2π/T)2R 5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πf=2πn (统一单位后频率与转速大小相同) 8.主要物理量及单位:弧长(S):米(m) 角度(Φ):弧度(rad)频率(f):赫(Hz) 周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s 角速度(ω):rad/s 向心加速度:m/s2 注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。 (2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。 3)万有引力 1.开普勒第三定律T2/R3=K R:轨道半径 T :周期 K:常量(与行星质量无关) 2.万有引力定律F=Gm1m2/r2 G=6.67×10-11N?6?1m2/kg2方向在它们的连线上 3.任意天体上的重力和重力加速度:GM=gR2 (黄金代换) M:为天体的质量(Kg) g:为天体表面的重力加速度(m/s2) R:天体半径(m) 4.卫星绕行速度、角速度、周期都用: F万有=F向心 5.第一、二、三宇宙速度:V1=7.9Km/s V2=11.2Km/s V3=16.7Km/s 注:(1)天体运动所需的向心力由万有引力提供,F心=F万。 (2)应用万有引力定律可估算天体的质量密度等。 (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同,h≈36000km 。 (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。 (5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S,最小周期约为83min。 三、力(常见的力、力矩、力的合成与分解) 1)常见的力 1.重力:大小:G=mg 方向:竖直向下 作用点:重心 g=9.8m/s2 ≈10 m/s2,适用于地球表面附近 2.胡克定律:F=kX 方向:沿恢复形变方向 k:劲度系数(N/m) X:形变量(m) 3.滑动摩擦力:f=μN 方向:与物体相对运动方向相反 μ:摩擦因数 N:正压力(N) 4.静摩擦力0≤f静≤fm 方向:与物体相对运动趋势方向相反 fm为最大静摩擦力 5.万有引力F=Gm1m2/r2 G=6.67×10-11N?6?1m2/kg2 方向在它们的连线上 6.静电力F=KQ1Q2/r2 K=9.0×109N?6?1m2/C2 方向在它们的连线上 7.电场力F=Eq E:场强N/C q:电量C 正电荷受的电场力与场强方向相同 8.安培力F=BILsinθ θ为B与L的夹角 当 L⊥B时: F=BIL , B//L时: F=0 9.洛仑兹力f=qVBsinθ θ为B与V的夹角 当V⊥B时: f=qVB , V//B时: f=0 注:(1)劲度系数K由弹簧自身决定 (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。 (3)fm略大于μN 一般视为fm≈μN (4)物理量符号及单位 B:磁感强度(T), L:有效长度(m), I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C), (5)安培力按“电-磁力”与洛仑兹力方向均用判定。 2)*力矩 1.力矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离 2.转动平衡条件 M顺时针= M逆时针 M的单位为N?6?1m 此处N?6?1m≠J 3)力的合成与分解 1.同一直线上力的合成 同向: F=F1+F2 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成 F=(F12+F22+2F1F2cosα)1/2 F1⊥F2时: F=(F12+F22)1/2 3.合力大小范围 |F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ Fy=Fsinβ β为合力与x轴之间的夹角tgβ=Fy/Fx 注:(1)力(矢量)的合成与分解遵循平行四边形定则。 (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立。 (3)除公式法外,也可用作图法求解,此时要选择标度严格作图。 (4)F1与F2的值一定时,F1与F2的夹角(α角)越大合力越小。 (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化成代数运算。 四、动力学(运动和力) 1.第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态 间) 13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为?8?2g的匀减速直线运动。(1) 上升最大高度: H = (2) 上升的时间: t= (3) 上升、下落经过同一位置时的加速度相同,而速度等值反向(4) 上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:t = (5)适用全过程的公式: S = Vo t -- g t2 Vt = Vo-g t Vt2 -Vo2 = - 2 gS ( S、Vt的正、负号的理解) 14、匀速圆周运动公式线速度: V= R?8?6 =2 f R= 角速度:?8?6= 向心加速度:a = 2 f2 R 向心力: F= ma = m 2 R= m m4 n2 R 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。 (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。 (3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。15、平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动 水平分运动: 水平位移: x= vo t 水平分速度:vx = vo竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t tg?8?0 = Vy = Votg?8?0 Vo =Vyctg?8?0 V = Vo = Vcos?8?0 Vy = Vsin?8?0 在Vo、Vy、V、X、y、t、?8?0七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量。 16、 动量和冲量: 动量: P = mV 冲量:I = F t(要注意矢量性) 17 、动量定理: 物体所受合外力的冲量等于它的动量的变化。 公式: F合t = mv - mv (解题时受力分析和正方向的规定是关键) 18、动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。 (研究对象:相互作用的两个物体或多个物体) 公式:m1v1 + m2v2 = m1 v1+ m2v2或?8?5p1 =- ?8?5p2 或?8?5p1 +?8?5p2=O 适用条件: (1)系统不受外力作用。 (2)系统受外力作用,但合外力为零。 (3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。 (4)系统在某一个方向的合外力为零,在这个方向的动量守恒。19、 功 : W = Fs cos?8?0 (适用于恒力的功的计算)(1) 理解正功、零功、负功 (2) 功是能量转化的量度 重力的功------量度------重力势能的变化 电场力的功-----量度------电势能的变化 分子力的功-----量度------分子势能的变化 合外力的功------量度-------动能的变化20、 动能和势能: 动能: Ek = 重力势能:Ep = mgh (与零势能面的选择有关) 21、动能定理:外力所做的总功等于物体动能的变化(增量)。 公式: W合= ?8?5Ek = Ek2 - Ek1 = 22、机械能守恒定律:机械能 = 动能+重力势能+弹性势能 条件:系统只有内部的重力或弹力做功. 公式: mgh1 + 或者 ?8?5Ep减 = ?8?5Ek增 23、能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功。 ?8?5E = Q = f S相24、功率: P = (在t时间内力对物体做功的平均功率) P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)25、 简谐振动: 回复力: F = -KX 加速度:a = - 单摆周期公式: T= 2 (与摆球质量、振幅无关) (了解?8?9)弹簧振子周期公式:T= 2 (与振子质量、弹簧劲度系数有关,与振幅无关) 26、 波长、波速、频率的关系: V = =?8?5 f (适用于一切波)电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?6?1m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J; (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。 恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?6?1m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法: 电压表示数:U=UR+UA 电流表外接法: 电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真 选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<RV [或Rx<(RARV)1/2] 12.滑动变阻器在电路中的限流接法与分压接法 限流接法 电压调节范围小,电路简单,功耗小 便于调节电压的选择条件Rp>Rx 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp<Rx 注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大; (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻; (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大; (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r); (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

高二物理知识点总结大全

3,高二物理知识点总结

人教版高中物理(选修3-2) 重、难点梳理 第 四 章 电磁感应 第1节 划时代的发现 第2节 探究电磁感应的产生条件 一、学习要求: 1、通过学习,使学生了解自然界的普遍联系的规律,科学的态度、科学的方法,是研究科学的前提,对科学的执着追求是获得成功的保证。从而培养学生学习物理兴趣,激发学习热情。 2、通过学习使学生知道科学的道路不平坦,伟人的足迹是失败、挫折+成功。 3、知道电磁感应及产生电磁感应的条件。 4、理解磁通量及其变化。 二、教材重点: 1、揭示“电生磁”与“磁生电”发现过程的哲学内涵。正确的理论指导和科学的思想方法是探究自然规律的重要前提。 2、磁通量的概念及磁通量与磁感应强度的关系。 3、通过对产生感应电流的条件和磁通量变化的分析,养成良好的过程分析习惯。 4、磁通量变化的各种形式。 三、教材难点: 1、以实验为基础,探究产生感应电流的条件。 2、控制实验条件,通过由感性到理性,由具体到抽象的认识方法分析归纳出产生感应电流的规律。 3、电磁感应中的能量守恒。 四、教材疑点: 1、移动磁铁的磁场引起感应电流时,磁铁内部的磁感线和外部的磁感线方向相反,形成闭合的曲线,教材中没有显示内部磁感应线。 2、磁通量是双向标量,教材中虽然没有提出,但在应用中不可避免地涉及到。 五、学生易错点: 1、对产生感应电流的条件的理解 ①闭合电路中的“闭合”在应用中易忽视。 ②磁通量发生变化,而不是磁场的变化。 2、磁铁内部的磁感线条数跟外部所有磁感线的条数相等 3、各种磁感线的分布规律及形状 4、磁通量增减的判断 六、教材资源: 1、自然现象之间的相互联系和相互转化的哲学思想,指导科学探究是奥斯特和法拉第获得成功的前提。 2、科学的规律在实验中总结出来的,实验是物理学科的基础。同时由具体到抽象,由感性到理性的高度概括是得到正确结论的关键。 3、教材中值得重视的题目是:P9第6题、P10第7题。 第3节 愣次定律 一、学习要求 1.经历实验探究过程,理解楞次定律。 2.会用楞次定律判断感应电流的方向。 在电磁感应现象里不要求判断内电路中各点电势的高低。 二、教材重点 1.楞次定律的获得及理解。 2.应用楞次定律判断感应电流的方向。 3.利用右手定则判断导体切割磁感线时感应电流的方向。 三、教材难点 楞次定律的理解及实际应用。 四、教材疑点 对“阻碍”的理解, 运用楞次定律判断感应电流方向的具体步骤 五、学生易错点 感应电流磁场方向与原电流磁场磁场方向关系 六、教学资源 1. 教材中的思想方法 通过实践活动,观察得到的实验现象,再通过分析论证,归纳总结得出结论。 2. 问题与练习 1、4、5、7 第4节 法拉第电磁感应定律 一、学习要求 1、理解法拉第电磁感应定律。 2、理解计算感应电动势的两个公式E=BLv和E=ΔΦ/Δt的区别和联系,并应用其进行计算。对公式E=BLv的计算,只限于L与B、v垂直的情况。 3、知道直流电动机工作时存在反电动势,从能量转化的角度认识反电动势。 二、教材重点 法拉第电磁感应定律。 三、教材难点 平均电动势与瞬时电动势区别。 四、教材疑点 法拉第电磁感应定律无法作定量的实验验证,更无法进行定量测量,只能将结论直接告诉学生。 五、学生易错点 Φ,ΔΦ,ΔΦ/Δt区别 六、教学资源 问题与练习:3、4、5、7 第5节 电磁感应定律应用 一、学习要求 1.知道感生电场。 2.知道电磁感应现象与洛仑兹力 3、通过同学们之间的讨论、研究增强电磁感应现象与洛仑兹力认知深度,同时提高学习物理的兴趣。 4、通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德。 二、教学重点 电磁感应现象与洛仑兹力 三、教学难点 电磁感应现象与洛仑兹力的理解。 四、教学资源 感生电场与感应电动势 第6节 互感和自感 一、学习要求 1、知道什么是互感现象和自感现象。 2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。 3、知道自感现象的利与弊及对它们的利用和防止。 4、能够通过电磁感应部分知识分析通电、断电自感现象的原因及磁场的能量转化问题。 5、通过对两个自感实验的观察和讨论,培养学生的观察能力和分析推理能力。 7、通过自感现象的利弊学习,培养学生客观全面认识问题的能力。自感是电磁感应现象的特例,使学生初步形成特殊现象中有它的普遍规律,而普遍规律中包含了特殊现象的辩证唯物主义观点 二、教学重点 1.自感现象。 2.自感系数。 三、教学难点 分析自感现象。 四、教学资源 自感现象的分析与判断 第七节 涡 流 电磁阻尼 电磁驱动 一、学习要求 通过实验了解涡流现象及其在生产和生活中的应用。 二、教材重点 1.涡流的概念及其应用。 2.电磁阻尼和电磁驱动的实例分析。 三、教材难点 电磁阻尼和电磁驱动的实例分析 四、教学资源 〔演示1〕涡流生热实验 〔演示2〕电磁阻尼。 按照教材“做一做”中叙述的内容,演示电表指针在偏转过程中受到的电磁阻尼现象。 〔演示3〕电磁驱动。 引导学生观察并解释实验现象。 第五章 交变电流 第1节 交变电流 教材分析 交变电流是生产和生活中最常用到的电流,而正弦电流又是最简单和最基本的。正弦式电流产生的原理是基于电磁感应的基本规律,所以本章是前一章的延续和发展,是电磁感应理论的具体应用。另一方面,本节知识是全章的理论基础,由于交变电流与直流不同,因此它对各种元件的作用也不同。正因为交变电流的特殊性,才有了变压器及其广泛的应用。所以,本节内容有承上启下的作用。 内容标准 知道交变电流,能用函数表达式和图像描述交变电流。 一、学习要求 1.知道交变电流。 2.通过模型或实验认识交变电流的产生过程,了解正弦式交变电流。 二、教材重点 1. 运用电磁感应的基本知识,分析交变电流的产生过程 2.认识交变电流的特点及其变化规律。 三、教材难点 交变电流的产生过程 四、教材难点 .交变电流的变化规律 五、教学资源 用图象表示交变电流的变化规律是一种重要方法. 第2节 描述交变电流的物理量 教材分析 与恒定电流不同,由于交变电流的电压、电流等大小和方向都随时间做周期性变化,需要用一些特殊的物理量来描述它在变化中不同方面的特性,本节主要介绍这样一些物理量。 一、学习要求 1. 知道交变电流的周期和频率,知道我国供电线路交变电流的周期频率. 2. 知道交变电流和电压的峰值,有效值及其关系. 3、 会用图象和函数表达式描述正弦交变电流。 二、教材重点 交变电流的有效值 三、教材难点 一般电流有效值的求解 四、教学资源 通过思考讨论,使学生明白,从电流热效应上看,交流电产生的效果可以与某地恒定电流相等,由此引入有效值的概念. 1.定义:让交流与恒定电流通过相同的电阻,如果它们在一周期内产生的热量相等,就把这个恒定电流的值(I或U)叫做这个交流的有效值. 课本第一次明确地用一个周期T来定义有效值,使得有效值的概念更加准确. 2. 正弦交变电流的有效值与峰值的关系 这一关系只对正弦式电流成立,对其它波形的交变电流一般不成立. 其它波形的交变电流的有效值就根据有效值的定义去求解。 3. 几点说明:①各种使用交变电流的电器设备上所标的额定电压、额定电流均指有效值;② 交流电压表和交流电流表所测量的数值也都是有效值;③将电容器接入交流电路中,其耐压值应不小于交变电流的最大值,但熔丝的选择应据有效值来确定其熔断电流;④一般情况下所说的交变电流的数值,若无特别说明,均指有效值。 4.有效值与平均值的区别:交变电流的有效值是按照电流的热效应来规定的,对一个确定的交变电流,其有效值是一定的,而平均值是由E=ΔΦ/Δt来确定的,其数值大小与时间间隔有关。在计算交变电流通过导体产生的热量、热功率时,只能用有效值,而不能用平均值;在计算通过导体截面的电量时,只能用交变电流的平均值,即q = It 。 第3节 电感和电容对交变电流的影响 教材分析 突出交流与直流的区别,加深学生对交变电流特点的认识。教材介绍了电感和电容在交浪电路中的作用,但不深入讨论感抗和容抗的问题,不在理论上展开讨论,而是尽可能用实验说明问题。 一、学习要求 1. 用实验方法了解电感在电路中对直流有导通作用,也能通过交变电流,定性了解电感对交流有阻碍作用,知道影响感抗大小的因素 2. 用实验方法了解电容器在电路中起隔断电流、导通交变电流的作用,定性了解电容器对交变电流有阻碍作用,知道影响容抗大小的因素. 二、教材重点 让学生知道电感和电容对交变电流的影响,并能定性解决有关问题. 三、教材难点 通过实验,了解电容器和电感器对交变电流的导通和阻碍作用。 教学资源 1、电感对交变电流的阻碍作用 2、交变电流能够通过电容器 第4节 变压器 一、学习要求 1、了解使用变压器的目的,知道变压器的基本构造,知道理想变压器和实际变压器的区别 2、知道变压器的工作原理,会用法拉第电磁感应定律解释变压器的变比关系 3、知道不同种类变压器的共性和个性 二、教材重点 变压器的工作原理,互感过程的理解 三、教材难点 对多个副线圈的变压器,或铁芯"分叉"的变压器,变比关系的推导和理解 四、教材疑点 当输出功率为零时,原线圈上为什么还有电流?这个电流有什么作用? 五、学生易错点 1、电压互感器与电流互感器在应用中的连线方法 2、电流与匝数的关系 六、教材资源 1、实验:探究变压器线圈两端的电压与匝数的关系。这个实验包含了探究问题的一般方法和过程,能很好地培养学生的动手能力。 2、电流互感器和电压互感器。 第5节 电能的输送 一、学习要求 1、知道“便于远距离输送”是电能的优点之一,知道输电的过程. 2、知道什么是输电导线上的功率损失和如何减少功率损失. 3、知道什么是输电导线上的电压损失和如何减少电压损失. 4、理解为什么远距离输电要用高压. 二、教材重点 变压器电压关系与功率关系的理解与应用 三、教材难点 输电线上电压损失与功率损失的理解与应用 四、教材疑点 1、增大输电线的直径减小电阻应该好像比使用变压器提高电压简单 2、直流输电有什么优点 五、学生易错点 在计算电能的损失功率时,输电线上的电压误以为加在输电线电阻上的电压。 六、教材资源 1、科学漫步:输电新技术和超导电缆输电 2、第54页第2题 第 六 章 传 感 器 第1节 传感器及其工作原理 一、学习要求 1、知道什么是传感器,传感器的工作原理。 2、知道传感器中常见的三种敏感元件及其它们的工作原理。 3、了解电容式传感器的应用。 二、重点难点 重点:理解并掌握传感器的三种常见敏感元件的工作原理。 难点:分析并设计传感器的应用电路。 三、教材疑点 霍尔元件中的载流子及实际工作中哪一侧电势高。 四、学生易错点 1、在实际应用中传感器是怎样将非电学量转换成对应的电学量的。 2、简单电路的分析。 五、教学资源 1、教材60页第2题介绍9种常见的传感器感受的非电学量转换成对应的电学量。 2、教材60页第1题与59上面的说一说相对应介绍电容式和电感式位移传感器。 第2节 传感器的应用(一) 一、学习要求 1、认识力传感器、声传感器、温度传感器、,了解它们的工作原理。 2、列举传感器在生活和生产中的应用。 3、利用传感器制作简单的自动控制装置 二、重点难点 重点:电子秤、话筒的工作原理。电熨斗的温度传感器和电饭锅的温度传感器构造,并了解它们不同的工作原理。 难点:利用传感器制作简单的自动控制装置。 三、教材疑点 应变片的工作过程,电熨斗的调温旋钮与对应的温度关系。 四、学生易错点 1、电容式话筒和动圈式话筒及驻极体话筒的区别与联系。 五、教学资源 1、教材64页第1、2、3题介绍三种传感器在生活中的具体应用。 第3节 传感器的应用(二) 第4节 传感器的应用实例 一、学习要求 1、知识与技能: ①.理解温度传感器的应用――电饭锅的结构及工作原理 ②.了解温度传感器的应用――各种数字式测温仪的特点及测温元件 ③.理解光传感器的应用――机械式鼠标器的构造及工作原理 ④.了解光传感器的应用――火灾报警器的构造及工作原理 ⑤.会用各类传感器(光传感器、温度传感器等)设计简单的控制电路 ⑥.掌握光控开关电了路的工作原理 ⑦.掌握温度报警器电路的工作原理 二、教材重点 应使学生加深对常用传感器的认识和使用范围。 三、本部分的教学难点是: 对传感器的工作原理的理解 四、本部分疑点是: 传感器的四个典型应用实例电饭锅、测温仪、鼠标器和火灾报警器的工作原理,分析它们如何实现非电学量向电学量的转换,及其进行简单电路的设计,以达到学以致用的目的. 热敏电阻,光敏电阻起都是由半导体材料制成的,分别随着温度的增大、光线的增强,它们里面的自由电子数均增多,故电阻均变小.相反,随着温度的减小、光度的减弱,电阻均变大. 五、学生易错点是: 不能正确理解传感器的工作原理我个人认为这个时候你应该多看看物理书然后记公式的同时联系想想之前和之后的章节有助于记忆和理解··祝你考个好成绩

高二物理知识点总结

4,高二学生怎么提高物理成绩

高二物理确实是比高一物理难一些!高一时,学习的主要核心就是构建力学体系,重点方面就是牛顿定律、万有引力定律、等等。高二涉及的核心就是电学,包括电荷,磁场,热学,量子物理等等。为什么说高二物理比高一物理难一些呢?因为在学习电学的时候还涉及一些受力分析问题,而这就需要你高一时打下一个良好的基础。并且有很多的很抽象的电场概念要去理解。要考虑到受力和运动学的关系。所以从受力分析和加速度开始学起,弄清楚牛顿第二定律,准没有错。高二开始的第一章是非常难的,高一有基础可能还听得云里雾里,没有基础难度就更大了。高二物理的前阶段主要是在学电学。到了第二章主要就是电路问题,闭合电路的欧姆定律,这些就和前面的基础关系不大了,并且不容易理解。但是物理并没有你想象的那么难,很多人学不好物理都是因为自己经常有负面的心理暗示,总是认为物理这么难,我能学好吗?久而久之,成绩就越来越差啦。所以说首先就是要改变自己的心态,要相信你自己能够学好物理。加油,同学!
高二物理确实是比高一物理难一些!高一时,学习的主要核心就是构建力学体系,重点方面就是牛顿定律、万有引力定律、等等。高二涉及的核心就是电学,包括电荷,磁场,热学,量子物理等等。为什么说高二物理比高一物理难一些呢?因为在学习电学的时候还涉及一些受力分析问题,而这就需要你高一时打下一个良好的基础。并且有很多的很抽象的电场概念要去理解。要考虑到受力和运动学的关系。所以从受力分析和加速度开始学起,弄清楚牛顿第二定律,准没有错。高二开始的第一章是非常难的,高一有基础可能还听得云里雾里,没有基础难度就更大了。高二物理的前阶段主要是在学电学。到了第二章主要就是电路问题,闭合电路的欧姆定律,这些就和前面的基础关系不大了,并且不容易理解。但是物理并没有你想象的那么难,很多人学不好物理都是因为自己经常有负面的心理暗示,总是认为物理这么难,我能学好吗?久而久之,成绩就越来越差啦。所以说首先就是要改变自己的心态,要相信你自己能够学好物理。加油,同学!高二学生,如果物理成绩不理想,就应该抓住时间,争取弥补学习中的问题,提高自己的学习成绩。高二物理的学习,是很关键的时期,需要端正学习态度,找到适合自己的学习方法,提高学习的效率,改变物理学科薄弱状态。高二学生,学习物理,要首先重视课本内容的理解,可以结合学科课程标准和课本内容,对教材知识进行认真整理,逐个知识点进行消化和理解。物理成绩的提高,离不开牢固的基础,没有平时的努力学习,深入理解课本知识,提高成绩就无从谈起。学霸虽然有灵活的头脑,但是,也离不开对考点的准确了解,深入分析,要学会分析课本上的物理公式和定理。物理课本知识有其内在逻辑,知识的总结有一定的条件,要想准确理解,就需要学会把握考点内容,关注知识之间的联系,学会推导,准确把握知识内容。高二学生,学习物理,要有自己的学习思路,不能盲目学习,学习要有自己的目标。我们在学习过程中,需要通过预习了解课本的大致内容,要明确自己理解不足的地方,对课本把握不准的知识,这些就是听课的侧重点,要带着问题去听课,这样听课效率才会提高。听课要提高效率,就需要明白老师讲课的思路,知道教材的重难点知识,要对自己理解不透的内容进行认真听,直到弄明白为止。听课的过程中,要适当记笔记,把老师讲解的重难点内容进行标记,方便自己以后复习。高二学生,学习物理,离不开训练,需要通过做题来提高自己的解题能力。在做题的过程中,要学会梳理和分析答题的思路和方法。学习成绩的提高,需要日积月累,平时要下苦功夫,学习态度要端正,复习要及时,学习中的问题要及时克服,不懂的问题尽量请教老师和同学。总之,高二学生,平时学习成绩一般,考试分数不太理想,就需要想办法去改变。在学习的过程中,要重视对课本内容的理解,能够准确理解和把握教材知识,特别是重难点知识。要学会分析教材,把握考点内容之间的关系,要学会带着问题学习,把握学习的重点,提高听课的效率。可以通过适当训练,不断总结解题技巧和方法,通过自己的不断努力,提高自己的学习成绩。
高二物理确实是比高一物理难一些!高一时,学习的主要核心就是构建力学体系,重点方面就是牛顿定律、万有引力定律、等等。高二涉及的核心就是电学,包括电荷,磁场,热学,量子物理等等。为什么说高二物理比高一物理难一些呢?因为在学习电学的时候还涉及一些受力分析问题,而这就需要你高一时打下一个良好的基础。并且有很多的很抽象的电场概念要去理解。要考虑到受力和运动学的关系。所以从受力分析和加速度开始学起,弄清楚牛顿第二定律,准没有错。高二开始的第一章是非常难的,高一有基础可能还听得云里雾里,没有基础难度就更大了。高二物理的前阶段主要是在学电学。到了第二章主要就是电路问题,闭合电路的欧姆定律,这些就和前面的基础关系不大了,并且不容易理解。但是物理并没有你想象的那么难,很多人学不好物理都是因为自己经常有负面的心理暗示,总是认为物理这么难,我能学好吗?久而久之,成绩就越来越差啦。所以说首先就是要改变自己的心态,要相信你自己能够学好物理。加油,同学!高二学生,如果物理成绩不理想,就应该抓住时间,争取弥补学习中的问题,提高自己的学习成绩。高二物理的学习,是很关键的时期,需要端正学习态度,找到适合自己的学习方法,提高学习的效率,改变物理学科薄弱状态。高二学生,学习物理,要首先重视课本内容的理解,可以结合学科课程标准和课本内容,对教材知识进行认真整理,逐个知识点进行消化和理解。物理成绩的提高,离不开牢固的基础,没有平时的努力学习,深入理解课本知识,提高成绩就无从谈起。学霸虽然有灵活的头脑,但是,也离不开对考点的准确了解,深入分析,要学会分析课本上的物理公式和定理。物理课本知识有其内在逻辑,知识的总结有一定的条件,要想准确理解,就需要学会把握考点内容,关注知识之间的联系,学会推导,准确把握知识内容。高二学生,学习物理,要有自己的学习思路,不能盲目学习,学习要有自己的目标。我们在学习过程中,需要通过预习了解课本的大致内容,要明确自己理解不足的地方,对课本把握不准的知识,这些就是听课的侧重点,要带着问题去听课,这样听课效率才会提高。听课要提高效率,就需要明白老师讲课的思路,知道教材的重难点知识,要对自己理解不透的内容进行认真听,直到弄明白为止。听课的过程中,要适当记笔记,把老师讲解的重难点内容进行标记,方便自己以后复习。高二学生,学习物理,离不开训练,需要通过做题来提高自己的解题能力。在做题的过程中,要学会梳理和分析答题的思路和方法。学习成绩的提高,需要日积月累,平时要下苦功夫,学习态度要端正,复习要及时,学习中的问题要及时克服,不懂的问题尽量请教老师和同学。总之,高二学生,平时学习成绩一般,考试分数不太理想,就需要想办法去改变。在学习的过程中,要重视对课本内容的理解,能够准确理解和把握教材知识,特别是重难点知识。要学会分析教材,把握考点内容之间的关系,要学会带着问题学习,把握学习的重点,提高听课的效率。可以通过适当训练,不断总结解题技巧和方法,通过自己的不断努力,提高自己的学习成绩。谢邀。高二物理差,这应该是你学习中的一种现状,而这一现状的形成,不是一朝一夕的结果,也不是单纯某一因素影响的结果,要扭转这种情况,应该先弄清楚导致这一现状的原因是什么,然后才能对症下药解决问题。在我看来,不外乎这么几种可能的原因:1、学习态度的问题;2、学习习惯的问题;3、基础知识、基本技能的缺失问题;4、学习方法的问题;5、智商问题。呵呵,关于第5点智商问题,我想不会是主要问题的哦,智商一般的学生,通过努力一样能学好物理,完全不是问题,再此不讨论这一点。而其他的四个方面,其实是相互影响的,没有良好的学习态度,就养不成好的学习习惯,没有好的学习习惯,就会在基础知识、基本技能方面存在大量的漏洞和不足,基础知识的漏洞和不足,让学生无法系统的提升思维能力,形不成体系性的知识结构,也无法体会物理的学习方法和技巧。学习是一个非常系统性的工程,不要孤立的看待问题,更不要觉得有什么方法和措施是可以包治百病的,要真正扭转学习上的困境,还得从根源上系统梳理。一般,绝大部分成绩差的学生,学习态度方面都有问题(当然,大部分学生是不承认的),一些最基本的学习态度,比如勤奋、踏实、努力这些东西,也就不去多说了,自己反思一下,这些方面有没有做到位。除了这些,我个人还有一点建议,那就是千万不要试图走捷径,虽然大部分学生学物理就是为了成绩,但是平时的学习中,最好不要只追求成绩,这样反而是缘木求鱼,只追求成绩到头来往往没有成绩。追求成绩,是有很多技巧和捷径的,这会导致学生忽略了基本能力的培养,只关注一些解题的技巧和方法,没有扎实的基础知识,这些技巧和方法也只是空中楼阁,看似是取得好成绩的捷径,其实是一个大坑。反过来,如果具备了扎实的基础知识,一些方法和技巧自然而然就能掌握。端正的态度是学习的思想前提,要真正产生效果、落到实处,那就得看学习习惯了,良好的学习习惯是要通过长年累月的坚持逐步形成的。良好习惯的养成,是从一点一滴的细节开始的。比如,课前预习、课堂听课、笔记、错题、作业、反思总结、试卷分析等等,整个学习的每一个环节、每一个细节,是不是都做好了。反思一下自己的学习过程,看看那些环节做的不够,找出问题,一项一项的改善。不管哪一科的学习,都是以良好的学习态度和习惯作为基础的。接下来,说说高二的学生,物理太差,怎么办?既然太差,那就从补基础开始吧,高二学年应该说马上就要结束了吧,很快就要进入高三系统复习阶段了,那就从暑假开始,从基础开始,系统的把基础知识复习一下,同时要注意基本技能的训练,比如最基本的受力分析、基本的数学运算等技能,是必须熟练掌握的。夯实了基础,物理的学习就能步上正轨,走上正轨之后,按照学校老师的规划或者自己的计划一步步展开,自然不会有大问题。

5,高二物理都有什么重点知识

高中物理主要是力学,要深刻理解牛顿三大定律。还有一些基本的电磁学等,没有量子物理,大学才有。
~~高二的话电学,比如电场什么的,力学的动量守恒定律都很重要,首先你要学好数学,然后做一些经典例题,然后你就会慢慢的学好物理了,最主要是上课要专注,祝你学习进步! ☆
数学的话,识记的东西还少的,物理主要是进入电磁学了(高二)也开始难起来了,公式比较多,但是很多公式是可以推导的,理解了原理是重要的,我就是记几个基本的公式,然后推导的。化学的话,有机记的多,其他的还好,实验也要重视,化学知识点比较琐屑,建议买本任志宏的《优化设计》题目和解析都还好的,大概就是这些了,希望我的回答对你有帮助,如有问题,可以追问,也可以加我qq问,一定详细解答你。
电学很重要

6,高中物理知识点总结

  一、质点的运动(1)------直线运动  1)匀变速直线运动  1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t  7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}  8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。  注:①平均速度是矢量, ②物体速度大,加速度不一定大,  ③a=(Vt-Vo)/t只是量度式,不是决定式,  ④其它相关内容:质点、位移和路程、参考系、时间与时刻、s-t图、v--t图、速度与速率、瞬时速度。  2)自由落体运动  1.初速度Vo=0 a=g; 2.末速度Vt=gt  3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh  注:①自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;  ②a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,高山处比平地小,方向竖直向下)。  3)竖直上抛运动  1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)  3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)  5.往返时间t=2Vo/g (从抛出落回原位置的时间)  注:①全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;  ②分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;  ③上升与下落过程具有对称性,如在同点速度等值反向等。  二、质点的运动(2)----曲线运动、万有引力  1)平抛运动  1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt  3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2  5.运动时间t=(2y/g)1/2 (通常又表示为(2h/g)1/2)  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0=2tgα;  7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo=tgβ/2  8.水平方向加速度:ax=0;竖直方向加速度:ay=g  注①平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;  ②运动时间由下落高度h(y)决定与水平抛出速度无关;  ③θ与β的关系为tgβ=2tgα;  ④在平抛运动中时间t是解题关键;  ⑤做曲线运动物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。  2)匀速圆周运动  1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf  3.向心加速度a=V2/r=ω2r=(2π/T)2r  4.向心力F心=mV2/r=mω2r=m (2π/T)2r=mωv=F合  5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr  7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)  8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。  注:①向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直指向圆心.  ②做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力永不做功,但动量不断改变.  (3)万有引力  1.开普勒第三定律:T2/R3=K=4π2/GM)  (R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量))  2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 (R:天体半径(m),M:天体质量(kg))  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}  5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s  6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km.h:距地球表面的高度,r地:地球的半径}  注:①天体运动所需的向心力由万有引力提供,F向=F万;  ②应用万有引力定律可估算天体的质量密度等;  ③地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;线速度、离地高度、加速度都恒定。  ④卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);  ⑤地球卫星的最大环绕速度和最小发射速度均为7.9km/s。  三、力(常见的力、力的合成与分解)  1)常见的力  1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)  2.胡克定律F=kx (方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m))  3.滑动摩擦力F=μFN (与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N))  4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)  5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)  6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)  7.电场力F=qE (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)  8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)  9.洛仑兹力f=qBVsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)  注:①劲度系数k由弹簧自身决定;  ②摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;  ③fm略大于μFN,一般视为fm≈μFN; ④其它相关内容:静摩擦力(大小、方向)〔〕;  ⑤物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子电量(C); ⑥安培力与洛仑兹力方向均用左手定则判定。  2)力的合成与分解  1.同一直线上力的合成 同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)  2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2 (余弦定理)  F1⊥F2时(即正交):F=(F12+F22)1/2  3.合力大小范围:|F1-F2|≤F合≤|F1+F2|  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ (β为合力与x轴之间的夹角tgβ=Fy/Fx)  注:①力(矢量)的合成与分解遵循平行四边形定则;  ②合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;  ③除公式法外,也可用作图法求解,此时要选择标度,严格作图;  ④F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;  ⑤同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。  四、动力学(运动和力)  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止  2.牛顿第二运动定律:F合=ma或a=F合/m (a由合外力决定,与合外力方向一致)  3.牛顿第三定律:F=-F′  4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}  5.超重:FN>G,失重:FN<G   6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔〕 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。  五、振动和波(机械振动与机械振动的传播)  1.简谐振动F=-kx   2.单摆周期T=2π(L/g)1/2 {L:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;L?r}  3.受迫振动频率特点:f=f驱动力  4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用 〔〕  5.机械波、横波、纵波 〔〕  6.波速v=s/t=λf=λ/T   7.声波的波速(在空气中) 0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)  8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大, λ大(f小)衍射明显。  9.波的干涉条件:两列波频率相同、(相位相同),  振动加强:到两振源的距离=波长整数倍 ΔS=nλ  振动减弱:到两振源的距离=半个波长的奇数倍 ΔS=(2n+1)λ/2  10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同  {相互接近,接收频率增大,反之,减小〔〕}  注:①物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;  ②加强区是波峰与波峰或波谷与波谷相遇处(振动步调相同的地方),这些点也在作振动。  减弱区则是波峰与波谷相遇处;(振动步调反相的地方)  ③波只是传播了振动形式,质点本身不随波发生迁移(只在平衡位置附近振动),是传递能量的一种方式; 也传递信号。  ④反射、干涉、衍射、多普勒效应等是波特有的现像;  ⑤振动图象与波动图象区别;  ⑥其它相关内容:超声波及其应用、振动中的能量转化〔〕。  六、冲量与动量(物体的受力与动量的变化)  1.动量:p=mv= {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}  3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}  4.动量定理:I=Δp或Ft=mvt–mvo   5.动量守恒定律:p前总=p后总(或p=p)′也可以是m1v1+m2v2=m1v1′+m2v2′  6.弹性碰撞:Δp=0;ΔEk=0   7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm   8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm   9.物体m1以v1初速度与静止的物体m2发生弹性正碰:  v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)  10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)  11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对   注:①正碰又叫对心碰撞,速度方向在它们“中心”的连线上;  ②以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;  ③系统动量守恒条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);  ④碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;  ⑤爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;  ⑥其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔〕。  七、功和能(功是能量转化的量度)  1.功:W=Fscosα   2.重力做功:Wab=mghab   3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab= a- b}  4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}  5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}  6.汽车牵引力的功率:P=Fv;P平=Fv平   7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)  8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}  9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}  10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt  11.动能:Ek=mv2/2=p2/2m {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}  12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}  13.电势能: A=q A {EA:带电体在A点电势能(J),q:电量(C), A:A点的电势(V)(从零势能面起)}  14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK  {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}  15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2  16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP  注:①功率大小表示做功快慢,做功多少表示能量转化数量;  ②Oo≤α<90o 做正功;90o<α≤180o做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);  ③重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少  ④重力做功和电场力做功均与路径无关(见2、3两式);  ⑤机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;  ⑥能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;1u=931.5Mev  ⑦*弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。  八、分子动理论、能量守恒定律  1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米、埃;10-9米纳米.  膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m2)}  3.分子动理论内容:物质由大量分子组成;大量分子在做规则的热运动;分子间存在相互作用力。  4.分子间的引力和斥力 (1)r<r0,f引<f斥,F分子力表现为斥力  (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)  (3)r>r0,f引>f斥,F分子力表现为引力  (4)r>10r0,f引<f斥≈0,F分子力≈0,E分子势能≈0  5.热力学第一定律ΔE=W+Q;------能的转化守恒定律;------第一类永动机不可能制成.  {(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出  6.热力学第二定律---第二类永动机不能制成---实质:涉及热现象(自然界中实际)的宏观过程都具方向性.  热传递表述: 不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);  机械能与内能转化表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性)  7.热力学第三定律:热力学零度不可达到 {宇宙温度下限:-273.15摄氏度(热力学零度)}  注:①布朗粒子不是液体分子,而是固体颗粒,能够反映液体分子的无规则运动,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;  ②温度是分子平均动能的标志;  ③分子间的引力和斥力同时存在,都随分子间距离的增大而减小,但斥力减小得比引力快;  ④分子力做正功,分子势能减小,在r0处F引=F斥;且分子势能最小;  ⑤气体膨胀,外界对气体做正功W>0, 内能增大ΔE>0;温度升高,吸收热量,Q>0, 内能增大ΔE>0;  ⑥物体内能是指物体所有分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;  ⑦r0为分子处于平衡状态时,分子间的距离;  ⑧其它相关内容:能的转化和守恒定律、能源的开发与利用、环保、物体的内能、分子的动能、分子势能。  九、气体的性质  1.气体的状态参量:  温度: 宏观上: 物体的冷热程度; 微观上: 物体内部分子无规则运动的剧烈程度的标志,  热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}  体积V:气体分子所能占据的空间, 单位换算:1m3=103L=106mL  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,  标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)  2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大  3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}  注:①理想气体的内能与理想气体的体积无关,与温度和物质的量有关;  ②公式3成立条件为一定质量的理想气体,使用注意温度的单位,t为摄氏温度(℃),T为热力学温度(K)。  十、电场  1.两种电荷、电荷守恒定律、元电荷: (e=1.60×10-19C);带电体电荷量等于元电荷的整数倍  2.库仑定律:F=kQ1Q2/r2(在真空中) F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2, Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引  3.电场强度:E=F/q(定义式、计算式)  {E:电场强度(N/C)是矢量(电场的叠加原理)q:检验电荷的电量(C)}  4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}  5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}  6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}  7.电势与电势差:UAB= a- b, UAB=WAB/q=-ΔEAB/q  8.电场力做功:WAB=qUAB=qEd {WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),  UAB:电场中A,B两点间电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)  9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}  10.电势能的变化Δ AB= B- A {带电体在电场中从A位置到B位置时电势能的差值}  11.电场力做功与电势能变化Δ AB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)  12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}  13.平行板电容器电容C=εS/4πkd (S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)  电容器两种动态分析:①始终与电源相接u不变;②充电后与电源断开q不变.距离d变化时各物理量的变化情况  14.带电粒子在电场中的加速(Vo=0): W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)  类平抛运动 :垂直电场方向: 匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)  平行电场方向: 初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m  注:①两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;  ②静电场的电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;变化电场的电场线是闭合的:电磁场.  ③常见电场的电场线分布要求熟记,特别是等量同种电荷和等量异种电荷连线上及中垂线上的场强  ④电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;  ⑤处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表面(距导体远近不同的等势面的特点?),导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;  ⑥电容单位换算:1F=106μF=1012PF;  ⑦电子伏(eV)是能量的单位,1eV=1.60×10-19J;  ⑧其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面〔〕。  十一、恒定电流  1.电流强度:宏观:I=q/t(定义式) (I:电流强度(A),q:在时间t内通过载面的电量(C),t:时间(s) 微观:I=nesv (n单位体积自由电何数,e自由电荷电量,s导体截面积,v自由电荷定向移动速率)  2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}  3.电阻、电阻定律:R=ρL/S {ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外  {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}  5.电功与电功率:W=Pt= UIt, P=UI {W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}  6.焦耳定律:Q=I2Rt  {Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}  7.纯电阻电路中:由于I=U/R,W=Q,因此W=QU=UIt=I2Rt=U2t/R  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总  {I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}  9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)  电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+  电流关系 I总=I1=I2=I3 I并=I1+I2+I3+  电压关系 U总=U1+U2+U3+ U总=U1=U2=U3  功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+  10.欧姆表测电阻  (1)电路组成 内电路和外电路  (2)测量原理  两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)  接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)  由于Ix与Rx对应,因此可指示被测电阻大小  (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。  (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。  11.伏安法测电阻  电流表内接法: 电流表外接法:  电压表示数:U=UR+UA 电流表示数:I=IR+IV  Rx的测量值=U/I=(UA+UR)/IR Rx的测量值=U/I=UR/(IR+IV)  =RA+Rx>R真 =RVRx/(RV+R)<R真  选用电路条件Rx?RA [或Rx>(RARV)1/2] 选用电路条件Rx?RV [或Rx<(RARV)1/2]  12.滑动变阻器在电路中的限流接法与分压接法  限流接法 分压供电  电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大  便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp<Rx  注:①单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω  ②各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;  ③串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;  ④当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;  ⑤当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(4r);效率50%  ⑥其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔〕。  十二、磁场  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A?m  2.安培力F=BIL; (注:L⊥B)   3.洛仑兹力f=qVB (注V⊥B);质谱仪〔〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:  (a) F向=f洛=mV2/r=mω2r=m (2π/T)2r=qVB;  r=mV/qB; T=2πm/qB;  (b) 运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);  (c) 解题关键:画轨迹、找圆心、定半径、圆心角=二倍弦切角。  注:1安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;  2磁感线的特点及其常见磁场的磁感线分布要掌握〔〕;  (d)其它相关内容:地磁场、磁电式电表原理、回旋加速器、磁性材料

7,高中物理 原子论知识要点

(一) 原子是组成化学元素的、非常微小的、不可在分割的物质微粒。在化学反应中原子保持其本来的性质。(二) 同一种元素的所有原子的质量以及其他性质完全相同。不同元素的原子具有不同的质量以及其他性质。原子的质量是每一种元素的原子的最根本特征。(三) 有简单数值比的元素的原子结合时,原子之间就发生化学反应而生成化合物。化合物的原子称为复杂原子。(四) 一种元素的原子与另一种元素的原子化合时,他们之间成简单的数值比。(五)化学元素由不可分的微粒—原子构成,它在一切化学变化中是不可再分的最小单位。(六)同种元素的原子性质和质量都相同,不同元素原子的性质和质量各不相同,原子质量是元素的基本特征之一。(七)不同元素化合时,原子以简单整数比结合。推导并用实验证明倍比定律。如果一种元素的质量固定时,那么另一元素在各种化合物中的质量一定成简单整数比。
我是来看评论的

8,高中化学知识点有哪些

氢离子的氧化性属于酸的通性,即任何可溶性酸均有氧化性。不是所有的物质都有化学键结合。有单质参加或生成的反应不一定为氧化还原反应,氟元素既有氧化性也有还原性。F-是F元素能失去电子具有还原性。CL2 ,SO2,NA2O2都有漂白作用。化学(chemistry)是自然科学的一种,主要在分子、原子层面,研究物质的组成、性质、结构与变化规律,创造新物质(实质是自然界中原来不存在的分子)。世界由物质组成,主要存在着化学变化和物理变化两种变化形式(还有核反应)。高中化学知识点:1、氢离子的氧化性属于酸的通性,即任何可溶性酸均有氧化性。2、不是所有的物质都有化学键结合。如:稀有气体、电解质溶液导电、电解抛光等都是化学变化。3、有单质参加或生成的反应不一定为氧化还原反应,氟元素既有氧化性也有还原性。4、F-是F元素能失去电子具有还原性。5、CL2 ,SO2,NA2O2都有漂白作用,但与石蕊反应现象不同: SO2使溶液变红,CL2则先红后褪色,Na2O2则先蓝后褪色。不同于研究尺度更小的粒子物理学与核物理学,化学研究的原子 ~ 分子 ~ 离子(团)的物质结构和化学键、分子间作用力等相互作用,其所在的尺度是微观世界中最接近宏观的,因而它们的自然规律也与人类生存的宏观世界中物质和材料的物理、化学性质最为息息相关。作为沟通微观与宏观物质世界的重要桥梁,化学则是人类认识和改造物质世界的主要方法和手段之一。

9,初二物理上册知识点有哪些

初二物理上册知识点包括机械运动、声现象、光的传播、 透镜及其应用、温度计原理、汽化和液化、质量与密度。物理学是研究物质最一般的运动规律和物质基本结构的学科。机械运动:在物理学中,我们把物体位置的变化叫做机械运动。1、宇宙中的一切物体都在做机械运动,机械运动是自然界中最普遍的运动形式。2、判断物体是否做机械运动关键是看物体是否发生“位置的变化”。声音的产生和传播1、声音的产生:一切发声的物体都在振动,振动停止,发声也停止。物体只有振动才能发声。2、声音的传播:声音的传播需要介质。气体、液体、固体都能传声,真空不能传声。3、声速:声在每秒内传播的距离。声音的传播速度决定于介质的种类,和温度。声音在不同的介质中的传播速度不同,声音在15℃的空气中的传播速度是340m/s。4、回声:声波在传播过程中,碰到大的反射面(如建筑物的墙壁等)将发生反射,人们把能够与原声区分开的反射声波叫做回声。人耳能够辨别回声的条件是:与原声的时间间隔大于0.1S。光的直线传播1、光的传播:光在同种均匀介质中沿直线传播。(影子、日食、小孔成像等2、光的传播速度:真空中的光速是宇宙中最快的速度,c=2.99792×108m/s,计算中取c=3×108m/s。温度计摄氏温度的规定:在一标准大气压下,把冰水混合物的温度规定为0℃,把1标准大气压下沸水的温度规定为100℃,0℃和100℃之间有100个等份,每个等份代表1摄氏度。使用方法:1、温度计与待测物体充分接触但不要碰到容器的底或壁;2、待示数稳定后再读数;3、读数时,视线要与液面上表面相平,温度计仍与待测物体紧密接触。质量:物体所含物质的多少叫质量。密度:某种物质组成的物体的质量与它的体积之比叫做这种物质的密度。1、公式:ρ=m/v,m=ρv,v=m/ρ2、单位:国际单位:kg/m3,常用单位g/cm3。单位换算关系:1g/cm3=103kg/m3 1kg/m3=10-3g/cm3。水的密度为1.0×103kg/m3,其物理意义为1立方米的水的质量为1.0×103千克。

10,高一和高二物理知识点的总结

第一章 静电和静电场 第一节 认识静电 一、静电现象 1、了解常见的静电现象。 2、静电的产生 (1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。 (2)接触起电: (3)感应起电: 3、同种电荷相斥,异种电荷相吸。 二、物质的电性及电荷守恒定律 1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。 2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。 3、用物质的原子结构和电荷守恒定律分析静电现象 (1)分析摩擦起电 (2)分析接触起电 (3)分析感应起电 4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。 第二节 电荷间的相互作用 一、电荷量和点电荷 1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。单位为库仑,简称库,用符号C表示。 2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。 二、电荷量的检验 1、检测仪器:验电器 2、了解验电器的工作原理 三、库仑定律 1、内容:在真空中两个静止的点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。 2、大小: 方向:在两个电电荷的连线上,同性相斥,异性相吸。 3、公式中k为静电力常量, 4、成立条件 ①真空中(空气中也近似成立),②点电荷 第三节 电场及其描述 一、电场 1、电场:电荷的周围存在着电场,带电体间的相互作用是通过周围的电场发生的。 2、电场基本性质:对放入其中的电荷有力的作用。 3、电场力:电场对放入其中的电荷有作用力,这种力叫电场力 电荷间的静电力就是一个电荷受到另一个电荷激发电场的作用力。 二、电场的描述 1、电场强度: (1)定义:把电场中某一点的电荷受到的电场力F跟它的电荷量q的比值,定义为该点的电场强度,简称场强,用E表示。 (2)定义式: F——电场力国际单位:牛(N) q——电荷量国际单位:库(C) E——电场强度国际单位:牛/库(N/C) (3)方向:规定为正电荷在该点受电场力的方向。 (4)点电荷的电场强度: (5)物理意义:某点的场强为1N/C,它表示1C的点电荷在此处会受到1N的电场力。 (6)匀强电场:各点场强的大小和方向都相同。 2、电场线: (1)意义:如果在电场中画出一些曲线,使曲线上每一点的切线方向,都跟该点的场强方向一致,这样的曲线就叫做电场线。 (2)特点: 电场线不是电场里实际存在的线,而是为形象地描述电场而假想的线,因此电场线是一种理想化模型。 电场线始于正电荷,止于负电荷,在正电荷形成的电场中,电场线起于正电荷,延伸到无穷远处;在负电荷形成的电场中,电场线起于无穷远处,止于负电荷。 电场线不闭合,不相交,也不是带电粒子的运动轨迹。 在同一电场里,电场线越密的地方,场强越大;电场线越稀的地方,场强越小。 (3)几种常见电场线的分布图形 第四节 趋利避害—静电的利用与防止 一、静电的利用 1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有: 静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。 2、利用高压静电产生的电场,应用有: 静电保鲜、静电灭菌、作物种子处理等。 3、利用静电放电产生的臭氧、无菌消毒等 雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。 二、静电的防止 静电的主要危害是放电火花,如油罐车运油时,因为油与金属的振荡摩擦,会产生静电的积累,达到一定程度产生火花放电,容易引爆燃油,引起事故,所以要用一根铁链拖到地上,以导走产生的静电。 另外,静电的吸附性会使印染行业的染色出现偏差,也要注意防止。 2、防止静电的主要途径: (1)避免产生静电。如在可能情况下选用不容易产生静电的材料。 (2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。
文章TAG:高二物理知识点总结高二物理知识

最近更新

  • 四大洋最小的是哪个,请问世界四大洋中面积最小的是什么洋呢

    本文目录一览1,请问世界四大洋中面积最小的是什么洋呢2,四大洋最小的是哪个3,四大洋中哪个大洋最小4,世界上四大海洋最小的海洋是哪一个5,1世界四大洋中面积最小的是6,七大洲四大洋哪个最大哪个最小7,四大海洋中面积最小的是哪一个1,请问世界四大洋中面积最小的是什么洋呢北冰洋谢谢采纳北冰洋印度洋2,四大洋最小的是哪个1、四大洋中面积最小的大 ......

    教育经验 日期:2022-09-25

  • 今年高考日期,今年的高考时间定了吗

    本文目录一览1,今年的高考时间定了吗2,今年高考日期是多少啊3,今年的高考时间是几号4,2021高考日期5,今年高考时间是六月几日6,河南省高考时间7,今年高考时间是哪几天8,2021年高考的具体时间是几月几日9,2021高考时间是怎样的1,今年的高考时间定了吗每年的高考时间都是固定的吧只要不是有什么特别恶劣的天灾人祸,时间不会改变的高考 ......

    教育经验 日期:2022-09-25

  • 辽油二高,辽油二高好还是辽油三高好

    本文目录一览1,辽油二高好还是辽油三高好2,辽油二高高考成绩3,辽河油田二高的教学质量好吗4,辽油二高好吗5,辽河油田第二高中报到时间盘锦市的6,辽油二高好吗7,辽油二三高的校长是谁8,盘锦市辽油二高好还是三高好9,辽油二高接收转学的学生吗都说二高现在管理的非常好学生学习10,辽油二高的人员配置11,辽油二高好吗12,辽油二高是小点高咋回 ......

    教育经验 日期:2022-09-25

  • 迎新晚会,迎新晚会是什么意思

    本文目录一览1,迎新晚会是什么意思2,迎新晚会是什么意思3,大学迎新晚会布置4,怎样举办一次有新意的迎新晚会5,学校迎新晚会有什么有意义的节目推荐下谢谢啦6,大学迎新晚会主题7,关于大学校园迎新晚会如何设计一个晚会能把所有节目都串联在8,一场迎新晚会各个部门应负责什么1,迎新晚会是什么意思字面意思估计是迎接新事物的晚会,具体指啥额,还得看 ......

    教育经验 日期:2022-09-25

  • 河北省教育厅网站,河北省教育考试网

    本文目录一览1,河北省教育考试网2,河北省教育局的投诉电话和邮箱是多少还有网址3,外省学生可以参加河北省高考吗4,那里用冀教版的教材5,河北省教育厅户口处6,哪位能帮忙查查河北今年的高招分数线明年高招是用的全国一卷新7,河北省教育厅专科学历认证都要带些什么8,关于河北省学历认证1,河北省教育考试网8月28日18时2,河北省教育局的投诉电话 ......

    教育经验 日期:2022-09-25

  • 中国数模网,数模中国怎样快速赚体力

    本文目录一览1,数模中国怎样快速赚体力2,中国数模网3,有关即将举办的这届全美数学建模大赛4,中国数模网5,3dmax中建模建模生物建模游戏建模的不同6,应聘数学建模专业7,怎样可以参加数学建模大赛8,数学建模论文加油站问题9,数学建模1,数模中国怎样快速赚体力回帖和每天登陆签到,发帖也可以,上传资料然后卖体力。2,中国数模网是的,不是造 ......

    教育经验 日期:2022-09-25

  • 国税发票查询,国税票真伪查询

    本文目录一览1,国税票真伪查询2,国税发票怎么查询3,国税局怎么查普通增值税发票真伪查询4,国税发票如何查询5,昆明或者云南地税发票如何查询真伪6,云南省地税发票真伪查询方法7,国税发票真伪查询8,国税发票真伪查询哪儿有9,国税发票怎么查真伪啊1,国税票真伪查询可到离你较近的国税办税服务厅或者拨打12366咨询热线进行普通发票的真伪查询。 ......

    教育经验 日期:2022-09-25

  • 对照检查材料 群众路线,党员领导干部的对照检查材料一般包括哪几个部分

    本文目录一览1,党员领导干部的对照检查材料一般包括哪几个部分2,对照检查材料整改措施及努力方向是什么3,对照检查材料五个方面存在的问题怎么写4,党的群众路线教育实践活动对照检查材料5,开展党的群众路线教育支部对照检查材料1,党员领导干部的对照检查材料一般包括哪几个部分党员领导干部都要自己动手撰写对照检查材料,内容主要包括:遵守党的政治纪律 ......

    教育经验 日期:2022-09-25