首页 > 管理 > 问答 > 管理经验 > 沭阳垃圾焚烧电厂怎么走,光大环境垃圾焚烧项目之江苏省篇

沭阳垃圾焚烧电厂怎么走,光大环境垃圾焚烧项目之江苏省篇

来源:整理 时间:2022-04-28 22:33:55 编辑:管理知识 手机版

入口速度取常数1.7m/s。二次风为常温压缩空气,喷射速度为80m/s,温度为293.15K。出口边界采用Outflow方式。3数值模拟结果与讨论3.1炉内燃烧过程模拟结果3.1.1温度与停留时间分布图3为垃圾焚烧炉中心截面的温度分布图。截面平均温度为1190K,锅炉整体温度较高。出口平均温度为1165K,与设计值1156K符合较好,表明计算比较合理。

二次风对气相燃烧作用明显,含有可燃挥发分的烟气与二次空气充分混合、燃烧,使炉内温度进一步升高,在二次风喷枪前炉膛中心部位的炉温最高,最高温度为1623K。图3焚烧炉温度分布对于可燃成分是否燃烧完全,烟气在燃烧室内的停留时间是一个重要的参数[8]。较长的停留时间可使炉内烟气中的可燃成分获得最大程度的燃尽。

图4为焚烧炉炉膛内的烟气停留时间分布图。图4炉膛气体的停留时间分布由图4可知,大部分烟气的停留时间为2~5s,烟气平均停留时间3.7s,烟气在炉膛内停留时间较长。锅炉二次风设计比较合理,可提供较好的烟气混合,使烟气在炉膛的高温区停留较长时间,从而使炉膛内可燃组分更有效地燃烧。3.1.2烟气组分分布图5为焚烧过程较为关注的CO与O2质量浓度分布图。

图5焚烧炉CO与O2浓度分布从CO浓度分布图可知,CO主要在二、三段炉排生成,该区域为垃圾焚烧主燃区,温度最高。主燃区挥发性气体析出较多,缺氧现象严重,燃烧不充分,CO大量生成,并释放到上层烟气中,在二次风作用下,与O2混合进行二次燃烧。对比CO和O2浓度图可以清楚看出,在CO浓度高的地方也是O2含量最少的地方。

第4段炉排为燃尽区,炉排上垃圾成分主要为灰渣,垃圾及烟气中可燃组分较少,CO基本不生成,O2含量较高。另外,通过出口烟气中的O2含量可以判断燃烧状况,当出口烟气中O2含量较高时,有利于烟气中可燃组分充分燃烧。从O2浓度分布图可看出锅炉出口处O2充足,体积分数为4.7%,与设计值5%~6%基本吻合,能保证CO等可燃物的充分燃烧。

出口处CO燃烧完全,浓度基本为零。3.2炉内过程对二恶英的影响为有效防止二恶英类污染物的生成,垃圾焚烧炉应满足烟气温度在1123K以上,停留时间大于2s这个标准。由图3可知,从炉内温度分布来看,大部分区域温度在1123K以上,锅炉的整体温度满足二恶英控制的温度要求。由图4可知,大部分烟气的停留时间在2s以上,锅炉的平均停留时间为3.7s,满足二恶英控制的停留时间要求。

结合图3、图4与图5可知,炉膛内燃烧温度较高,烟气停留时间较长,可有效控制二恶英在炉内的生成,同时也有利于可燃组分充分燃烧。3.3炉内过程对SNCR的影响SNCR技术适合于垃圾焚烧烟气的脱硝。该技术实施的关键是选择合适的温度区。根据计算结果,可知余热锅炉区温度满足SNCR狭窄的温度窗。因此,选取SNCR设计区域为余热锅炉入口至折焰角区,高度为锅炉10~26m处,如图6所示。

图6SNCR模拟区域及网格划分3.3.1温度与停留时间分布对SNCR的影响SNCR技术脱除NOX效率与反应温度密切相关,温度低于或者高于最佳脱硝温度,脱硝率均迅速下降。图7为SNCR设计区域的温度与速度随高度的分布图。由图7可知,入口处由于燃尽风的喷射,烟气温度与速度有较明显波动。设计区域温度稳定,满足SNCR的温度窗,最低温度在高17m处,温度为1211.7K,大于1173K。

烟气速度为3.3~6.8m/s,平均速度为3.9m/s。图7温度和速度随高度的变化SNCR喷枪一般采取分层布置,布置层数为2~3层,布置区应选取烟气速度不是太快的区域。从图7可以看出,在高10~12m处,烟气速度较快,不适合布置SNCR喷枪。而且烟气速度过快,不利于氨剂对锅炉截面的有效覆盖及与烟气的有效混合。

SNCR还原反应中,在合适的反应温度下,反应时间是保证反应转化率的重要条件。图8为SNCR设计区域烟气平均停留时间。由图8可知,大部分烟气停留时间超过2s,平均停留时间为4.5s。根据实验结果,SNCR反应较适宜停留时间为1.2s左右[9],为满足反应时间要求,SNCR喷枪采取两层布置的方式,选取的布置区域为高13m及19m处。

图8余热锅炉气体的停留时间分布图3.3.2烟气组分分布对SNCR的影响根据反应机理分析可知,氨剂及中间产物与NO、O2之间存在竞争反应,O2浓度对还原反应有重要影响。O2浓度过低不利于NO还原反应的进行,但是过高的O2浓度促进了NH3氧化生成NO的反应,削弱了NH3还原NO的反应,使得NO脱除效率降低。

图9为SNCR设计区域NOX与O2随高度的分布图。由图可知,烟气中的O2质量分数为4.7%~5.5%,在此范围内,既可以保证NH3还原NO的反应进行,又不会对NO的脱除效率产生明显的负面影响。因此,计算区域O2含量可充分满足SNCR反应的需求。根据初始NO浓度对脱硝效率的影响,初始NOX浓度越高,脱硝效率越大。

研究表明,当初始的NOX水平降到100mg/kg以下时,NOX还原效率降低[10]。由图9可知,NOX的质量浓度为300mg/kg左右,大于100mg/kg,有利于SNCR反应的进行。图9NOX和O2浓度随高度的变化CO能够使SNCR最佳脱硝温度向低温方向移动,但并不能提高SNCR的最大反应效率[11]。

由图5可知,垃圾焚烧锅炉中CO燃烧十分充分,出口处CO浓度趋近于零,对SNCR过程基本没有影响。4结论(1)余热锅炉出口平均烟温和烟气组分浓度与设计值符合良好,表明模拟结果合理。(2)由垃圾焚烧炉气体燃烧的温度分布图和气体在炉膛内的停留时间分布图可知,焚烧炉能有效控制二恶英的生成,同时也可以保证可燃组分充分燃烧。

文章TAG:垃圾焚烧沭阳电厂江苏省光大

最近更新